当您的工作现场需要更多的电力支持,更少的麻烦——请选择康明斯电力!

联系我们产品中心
当前位置:首页新闻资讯常见故障 › 柴油发电机带负荷时电压和速度的变化曲线

柴油发电机带负荷时电压和速度的变化曲线

发布来源:康明斯电力(深圳)有限公司  发布日期: 2024-08-12  访问量:51

为了保证柴发机组在突然投入或切除大容量负载时的运转稳定性,必须详细探讨柴油发电机组带载启动和突加、突卸负载时转速、电压电流、功角和功率等物理量的变化状况,解析其受扰动的危害程度,为改良柴油发电机速度控制、发电机励磁控制等供应理论依据。这就需要建立精确的柴发机组的数学模型并进行仿真讨论。柴油发电机组是强非线性机构,所以必须建立柴发机组的非线性模型。目前,很多文献对发电机组都采用简化模型,这样虽然方便了电力系统的稳态剖析,但在突加突减负荷时,势必会引起误差,采用降阶简化模型的动态仿真已经无法反映柴发机组的实际运行情形。本文建立了柴发机组的七阶数学模型,能够保证暂态仿真精度。

闭式循环水冷却的机组还必须有散热水箱,这些部件一般都装配在一个公共底盘上,整个发电机组形成一个整体,便于移动和装配。柴油发电机冷却机构采用的风扇、水箱散热器、机油冷却器都安装在柴油发电机前端,风扇为吹风式。控制装置一般为控制箱,通过减震器安装在发电机接线箱上,各电气仪表、信号灯、电气控制开关装配在控制箱面板上,这种构造形式称为“一体式”。与此相差别,有些大容量发电机组或者需要隔室操作的机组,其控制机构往往是落地式的控制界面,这种构造形式的机组称为“分开式”。

      系统框图如图1所示。柴油发电机供给发电机组原动力,其调速系统通过测定实际速度和设定速度的差,调节柴油发电机的供油量,结构速度的闭环控制,在一定负荷变化范围内保证柴油发电机的转速稳定,从而保证输出电压和频率稳定(负载特点曲线所示)。发电机的励磁机构通过测定发电机端电压和负荷电流调整励磁电流大小,结构电压的闭环控制。

       柴油发电机组的数学模型包括同步发电机的数学模型、柴油发电机及调速板的数学模型、发电机励磁系统的数学模型。数学模型可以用微分方程组的形式描述,也可以用传递函数或状态方程的形式描述,后两者更适用于线性系统建模。故本文以微分方程组的形式来描述柴油发电机组的数学模型。

      同步发电机是柴油发电机组的核心,集旋转与静止、电磁变化与机械运动于一体,实现电能与机械能变换,其动态性能十分复杂,而其动态性能又直接危害柴油发电机组的性能。故应对同步发电机作深入分析,考虑其定子绕组的暂态步骤、阻尼绕组以及励磁绕组的暂态程序和转子的动态程序,建立同步发电机的7阶非线性数学模型。将发电机铭牌的有名值参数归算到自身功率基准值下的标幺值,通过购买各绕组标幺值的基值,确保标幺值互感可逆(第一约束)及保留传统的标幺电机数据(第二约束),同步发电机dq0坐标下经过派克变换的标幺值方程如下:

f,uf,φf折合到定子侧的适合物理量,以便在定子侧进行分析及度量,故引入以下5个定子侧等效适合变量:

d 为柴油发电机输出转矩; Tr 为柴油发电机阻力矩; ω为柴油发电机曲轴角速度。

fi 可认为是调速器的输出量,即喷油量调节量,而速度控制器的输入为转速差信号 Δω,输出量是速度的比例项、积分项和微分项的线、励磁系统数学模型

      励磁机构向发电机供应励磁电流,起着调整电压、保持发电机端电压恒定的用途。同步发电机励磁控制机构按照励磁电流的获得方法可分为3类:直流励磁机他励程序、静止自励程序、交流励磁机他励步骤。静止励磁方法的自励静止励磁装置目前操作较为普遍,本文采用这种励磁装备。自励静止励磁机构由同步发电机、PID励磁调整器、可控整流器和互感器结构,根据励磁机构的机理,可以求得其数学模型为:

ΔU+ki?∫h0ΔUdt+kd?(dΔU/dt) 三、隐式梯形积分法的仿真算例

       对柴油发电机组一系列物理量在大扰动下的变化进行仿真和解析,就必须求解其数学模型对应的微分方程组和代数方程组。微分方程组的求解方案详细有隐式梯形积分法、改良欧拉法和龙格–库塔法。在现今电力系统暂态稳定性分析中,微分方程数值求解多用隐式梯形积分法,用该对策进行柴油发电机组暂态和稳态解析时,对电力机构方程式:

+1)=0      再和tn~tn+1时步的差分代数方程组联立求解。其实质为求解一组非线性代数方程组。故本文选取该数值算法作为求解柴油发电机组7阶非线性数学模型的算法。根据上述隐式梯形积分法原理,只要设定发电机组的速度、电压、电流、功率等数据初始值和仿真步长、仿真时间以及在不一样扰动下的负荷,即可利用C#实现模型求解,求解流程如

图3所示,只要时间t未达到设置好的仿真时间times pan,物理量w,U,I,Te等就会通过各自的表达式计算出当下步长的数值解,循环结束之后,分别得到各自的一组数组解。 

       根据上文所建立的柴发机组的非线性数学模型和C#求解模型的过程步骤图,分析大扰动下柴发机组在突加、突卸负荷时转速和电压的变化情形,从而确定柴发机组在受到扰动后的稳定性,为改进发电机速度调整和励磁控制等环节的精度提供理论依据。

      表1列出了算法步骤中用到的所有数据取值,发电机适合数据的取值参考了斯坦福UCM系列类型有阻尼凸极机同步发电机详细参数典型值,柴油发电机模型中的参数是参考康明斯K19型柴油发电机参数确定的。其具体参数为:额定功率

h=600 HP,缸数i=6,机组的飞轮转矩GD2=1004 kg·m2,柴油发电机惯性时间常数TJ=2.1 s。表1    柴油发电机组算法流程参数取值

      突加负载时,柴油发电机组的负载电流突增,会引起发电机速度的暂时下降和市电电压的暂时下降。这时,选型负载的阻抗值为r=0.32,x=0.8,

=0.86,即突加46.8%负载,在t=4 s时给予扰动,响应曲线所示。 图4  柴油发电机突卸负载时速度变化曲线  柴油发电机突卸负载时电压变化曲线  柴油发电机突加负载时速度变化曲线  柴油发电机突加负荷时电压变化曲线       在突加负载时,发电机组的动态调速率为2.4%,稳定期间为1.4 s;动态电压变化率为7.7%,稳定期间为1.28 s。在突卸负荷时,发电机组的动态调速率为0.7%,稳定期间为1.5 s;动态电压调整率为2.1%,稳定期间为1.2 s。根据规定,当速度为额定速度时,突加负载时的瞬态电压值不低于额定电压的85%,突卸负荷时,瞬间电压值不超过额定电压的120%,电压恢复到稳定值3%以内所需的时间应不超过1.5 s,可见仿真结果的指标完全符合要求。 

      本文通过解析柴发机组的机构构造机理,建立了同步发电机的7阶非线性数学模型、柴油发电机调速系统的数学模型、励磁机构的数学模型。采用隐式梯形积分法在C#下求解了柴发机组的非线性微分方程组。最后,选购了特定规格的柴发机组并根据非线性方程组的求解结果,进行了仿真验证。结果表明本文所建立的柴油发电机组的非线性数学模型完全符合标准。

http://www.hsfdjw.com