当您的工作现场需要更多的电力支持,更少的麻烦——请选择康明斯电力!

联系我们产品中心
当前位置:首页新闻资讯常见故障 › 气门组的所有构造零部件图解

气门组的所有构造零部件图解

发布来源:重康电力(深圳)有限公司  发布日期: 2024-11-11  访问量:38

的气门组件主要是用来密封柴油发电机的进气道和排气道,并保证柴油发电机正常换气。其主要构成部件是气门、气门弹簧、气门导管、气门座圈及锁紧装置等。气门组件在整个柴油发电机中的润滑和冷却条件极差,且受到交变载荷的冲击和发烫、腐蚀等的影响,故而这部分零件极易发生损坏。气门组件损坏后,柴油发电机会出现很多损坏现象,例如油耗增加、功率减小、很难着车和排气异常等。因此,气门组是发电机中非常重要的一个部件,它的的构成设计和工作原理直接影响着发电机的性能和效率。

      气门的作用是密封燃烧室,并使柴油发电机的各汽缸得到正常换气(作业机理及位置如图1所示)。气门具体由头部和杆部两部分构造(如图2所示)。气门头部的形状有平顶、凸顶和凹顶,目前使用较多的是平顶,这具体是因为平顶气门的头部形状大概、制造方便,受热面积小等优点。柴油发电机为了提高燃烧室内的进气量,进气门的头部通常做的比排烟门大,因为增大进气门可以减少进气阻力,增大进气量,这比增大排气们减少排烟阻力更为有效。

      进气门通常用中碳合金钢制造,如铬钢、铬钼钢和镍铬钢等。排烟门则采用耐热合金钢制造,如硅铬钢、硅铬钼钢、硅铬锰钢等。

      气门的工作要素非常恶劣。首先,气门直接与高温燃气接触,受热严重,而散热困难,因此气门温度很高。其次,气门承受气体力和气门弹簧力的用途,以及由于配气装置运动件的惯性力使气门落座时受到冲击。第三,气门在润滑条件很差的情况下以极高的速度启闭并在气门导管内作高速往复运动。此外,气门由于与发烫燃气中有腐蚀性的气体接触而受到腐蚀。

      一般发电机采用较多的是每缸两个气门,即一个进气门和一个排烟门。这种组成在可能的条件下应尽量加大气门的直径,特别是进气门的直径,以改良汽缸的换气性能。但是,因为受到燃烧室尺寸的限制,从理论上讲,较大气门直径一般不超过汽缸直径的一半。

      当气缸直径较大、活塞平均转速过高时,每缸一进一排的气门构成就不能满足发电机对换气的要求。这就要采用每缸三气门、四气门(如图3所示)甚至五气门的构成。

      进排气门密封锥面的斜角也有不一样,进气门通常采用30℃的斜角,排烟门通常采用45℃的斜角(如图4所示)。进气门的锥面采用30℃的斜角,具体是因为较小的锥面斜角可使气流通过断面的流量增大,进气阻力较小,可以增加进气量,但气门头部边缘较薄,刚度较差,致使密封性变差。较大气门锥角可提高气门头部边缘的刚度,气门落座时有较好的自动对中功用及较大的接触压力,有利于密封与传热及挤掉密封锥面上的积炭。

      气门导管分为带卡环槽和底部带锐边两种结构形式,如图5(a)所示。其功能是给往复运动的气门起着导向功用,并保证气门头部正确地落在气门座上,同时还够把气门的部分热量传出去。气门导管一般采用铸铁铸成,因为它在高温和温润条件较差的环境下工作,故而该部件较易产生磨耗现象。气门导管与气门杆部在长期的相对运动的磨耗中,易使两者之间的配合间隙增大。正常情况下柴油发电机正规厂家,进气门与导管的间隙为0.09mm左右,排烟门与导管的间隙约为0.12mm,当间隙增大到极限值0.26mm时,气门导管与气门应成对换新。若装配时间间隙过小,则易发生气门卡死现状。    

      气门导管的上端装有橡胶气门油封,构造如图5(b)。为了防止导管在操作步骤中松动脱落,有的发电机在气门导管的中部加装定位卡环。

      气门座圈是为往复运动的气门而设计的,它与气门一起用来密封燃烧室。气门座圈一般采用耐热铁制造,并压入气缸盖中,气门座圈持久受到气门的持续冲击和发烫、高压气体的腐蚀,在使用程序中特别容易发生损坏。在持久的工作中气门座圈的锥面容易产生麻点、凹坑、座圈缩短和磨耗变宽等现状。

      气门座通常分为圆柱面、圆锥面和镶嵌面三种组成形式,按照锥面角度又分为锥角相同和不同两种,如图6所示。其中,镶嵌面式气门座的导热性差,加工精度要求高,如果镶入时公差配合选用不当,发热下工作时易脱落,容易引起重大机械事故。

      气门弹簧的用途是保证气门快速地落在气门座圈上紧密地闭合,并防止气门在开闭程序中因惯性力的作用而与传动装置脱开。气门弹簧应具有足够大的弹力,若弹力不足或断裂会直接危害到燃烧室的作业情形。为此,检修人员在安装气门弹簧时,应对其弹力进行检测。当旧弹簧的自由长度小于同一型号新弹簧约4mm时,应更换新弹簧。气门上含有内外弹簧时,在安装过程中应使内外弹簧的螺旋方向相反,避免单个弹簧断裂后而危害到另一个弹簧。

      气门弹簧分为等螺距圆柱形、变螺距圆柱形和双气门弹簧三种形式,主要形状类型如图7所示。为了避免弹簧发生共振,可采用变螺距圆柱弹簧(如图7b)。现代高速发电机多采用同心安装的内、外双气门弹簧(如图7c),这样既提高了气门弹簧作业的可靠性,又能有效地避免共振的发生。

      气门弹簧座的固定方式有2种,如图8所示。

(1)如图8(a)所示,锁片式是将整个中空圆锥剖开分为两半,所述内孔具有环形凸起,弹簧座中心孔为圆锥形,与锁片的外锥面紧密配合.

(2)如图8(b)所示,锁销固定方式相对大概。将弹簧座与弹簧一起压下后,将锁销插入阀杆尾部的径向孔中。放松弹簧座后,锁销正好位于弹簧座外侧的凹点内,防范弹簧座脱落。

      配气相位是用曲轴转角表示的进、排气门的开启时刻和开启延续时间,通常用环形图表示,即配气相位图,如图9所示。为了使进气充足,排烟干净柴油发电机十大厂家,除了从构成上进行改进外(如增大进、排气管道),还可以从配气相位上采取对策,如气门能否早开晚闭,增长进、排烟时间。

      由于柴油发电机作业时需要新鲜空气和燃料混合燃烧才能做功,而配气相位系统正是向汽缸供应新鲜空气的装置,其同时还负责将将燃烧做功之后的废气排出柴油发电机,主要作用就是按一定的时间周期开、关各气缸的进、排气气门,工作机理如图10所示。

      空气在被吸入柴油发电机时是具有惯性的,于是在进气程序结束后,进气系统中的空气依然保持着进入气缸的趋势,这时如果延长进气门的关闭时间就可以让汽缸吸入更多空气,提高容积效率。相对来说,延长气门的关闭时间可以提高高转速下的性能表现,反过来缩短气门关闭时间,则可以让低转速功率得到增强。

      活塞到达进气下止点时,因为进气吸力的存在,气缸内气体压力仍然低于大气压,在大气压的功用下仍能进气;另外,此时进气流还有较大的惯性。由此可见,进气门晚关可以增加进气量。进气门早开,可使进气一开始就有一个较大的通道面积,可增加进气量。

      在做功行程快要结束时,排气门打开,可以利用做功的余压使废气高速冲出气缸,排量约占50%。排气门早开康明斯发电机图片,势必造成容量损失,但因气压低,损失并不大,而早开可以减少排烟所消耗的功,又有利于废气的排出,所以总功率仍是增强的。由此可见,气门具有早开晚闭的可能,它对发电机实际工作的益处如下:

     增大了进气行程开始时气门的开启高度,可减小进气阻力,增加进气量。

      延长了进气时间,在大气压和气体惯性力的作用下增加进气量。

      借助气缸内的高压自行排气,大大减轻了排气阻力,使排烟干净。

      延迟了排气时间,在废气压力和废气惯性力的作用下使排气干净。

      因为进气门早开,排烟门晚关,势必造成在同一时间内两个气门同时开启。两个气门同时开启时间相当的曲轴转角,叫做气门重迭角。在这段时间内,可燃混合气和废气不会乱串。这是由于:进、排烟流各自有自己的流动方向和流动惯性,而重迭时间又很短,不至于混乱,即吸入的可燃混合气不会随同废气排出,废气也不会经进气门倒流入进气管,而只能从排烟门排出;进气门附近有降压功用,有利于进气。

       在排气行程接近终了时,活塞到达上止点前,即主轴转到离上止点还差一个角度(进气提前角)α,进气门便开始开启,进气行程直到活塞越过下止点β(进气延尺角)时,进气门才关闭。整个进气过程延续时间相当于主轴转角180°+α+β。

      一般状况下,α=10°~30°,β=40°~80°,故进气程序主轴转角为230°~290°。

      做功行程接近终了时,活塞在下止点前排烟门便开始开启,提前开启的角度γ通常为40°~80°,活塞越过下止点后δ角排烟门关闭,δ一般为10°~30°,整个排烟程序相当主轴转角180°+y+δ,为230°~290°;气门重迭角α+δ=20°~60°。

      从上面的解析可以看出,实际配气相位和理论上的配气相位相差很大,气门要早开晚关,详细是为了满足进气充足、排烟干净的要求。但实际中,要根据各种机型,经过实验的方式确定气门开关的较适宜时机,由凸轮轴的形状、位置及配气系统来保证。

      气门组的正常运转对于发电机的稳定性和可靠性非常重要。如果气门组出现故障,比如气门卡松动、气门弹簧失效等,就会致使气门无法正常关闭或打开,从而影响发电机的正常运行。因此,定期检验和维护气门组是保证发电机正常运行的重要方案之一。气门组是发电机中非常重要的一个部件,它的功能不仅仅是控制气缸内的进气和排气,还直接影响着发电机的性能和效率。因此,对于气门组的布置、调节和维护都需要非常重视。

http://www.hsfdjw.com