当您的工作现场需要更多的电力支持,更少的麻烦——请选择康明斯电力!

联系我们产品中心
当前位置:首页新闻资讯行业资讯 › 康明斯柴油发电机部件工艺改良和提高技术

康明斯柴油发电机部件工艺改良和提高技术

发布来源:重康电力(深圳)有限公司  发布日期: 2025-03-18  访问量:47

摘要:在人们的印象中,柴油发电机都是傻大黑粗,技术落后,除了动力强劲之外一无是处。其实现代的柴油发电机随着现代科技的发展,也搭载了越来越多的领先技术,让柴油发电机的动力性、经济性越来越突出,而且噪音和排放控制得越来越好。当今先进的柴油发电机,是一种集冶金、材料、加工、自动控制、传感器柴油发电机组价格一览表、化工为一体的高科技产品。本文以康明斯发电机KTA38系列为例,综述了通过机体选取合理的炉料配比、化学成分、增C剂,并控制Si/C、Mn/S,提升大马力缸体铸件力学性能的工艺改进。

      柴油发电机的散热与热管理是非常重要的,也是发电机布置中的一个难题。现代柴油发电机一般使用强制循环水冷却系统,合理规划发电机气缸体水道,可以让水箱宝均匀地流过发电机每一个角落,让散热更均衡,防止了老式柴油发电机部分气缸冷却不足的弊端。现代柴油发电机大多操作免保养水泵,树脂叶轮,碳化硅密封圈,叶轮净重更轻、更耐腐蚀,防渗漏能力更强,使用寿命大大延迟。为了防止水箱宝腐蚀发电机,通常都使用专用防锈水,不允许用普通冷却水替代。同时采用电喷硅油风扇离合器,可以更精准地控制风扇的转速,让发电机尽快升温,并保证高负荷时的冷却强度。

      原发电机组的盘车采用的盘车杆手动盘车,飞轮外圆上有盘车孔,需要盘车时将盘车杆插人盘车孔,通过人力搬动盘车杆进行盘车。这样轮机人员不但劳动强度大,而且盘车不正确,需要多次搬动盘车杆才能达到盘车要求,同时无法进行盘车连锁,盘车时很容易造成人身伤亡事故。为此康明斯发电机公司设计了电动盘车系统,见图1,另外在柴油发电机飞轮上布置装配了一个盘车齿圈。需要盘车时,只需按动按钮,电动盘车装置的小齿轮与飞轮的盘车齿圈相啮合,就可以顺利带动柴油发电机按照要求进行盘车。重要的是该盘车系统可以安装一个手柄开关进行起动盘车连锁。盘车时,柴油发电机启动空气管路被自动切断,避免了盘车时人身伤亡故障的发生。

      康明斯柴发机组原来采用TPS61-F33增压器,虽然也能满足发电机组使用规范,但是存在大马拉小型发电机组的现象,该增压器裕度太大,存在浪费现象。为了在不危害柴油发电机性能的前提下节约成本,特地重新进行了增压器选择。经过配机试验,选用了霍尔塞特增压器正式作为该型发电机组的增压器(外观如图2所示),仅此1项每台可节约成本5万余元。48台柴油发电机组,可节约成本240万元,效益相当可观。

      现代柴油发电机不论是冷起动能力还是热启动能力都非常强,几乎都可以做到“点火就着”。这是因为现代柴油发电机有一套先进的启动技术。首先是有一个大容量的起动马达,保证柴油发电机有足够的启动转速;其次是有先进的起动控制逻辑,在起动阶段的喷油正时、喷油量等控制更精准;最后就是有火焰预热启动装置,可以在气温偏低时加热进入燃烧室的空气,让冷起动更容易。

      为了提高缸套内表面耐磨性,避免拉缸现象产生,因此在缸套内表面增加了软氮化要求,缸套内表面粗糙度由Rz 5-10改为Rz 3-7。

      活塞由分体式改为整体铸铁活塞,为了预防燃油喷到汽缸壁上和活塞顶太热,对w型线mm,同时加大了活塞滑油冷却腔面积。为了预防柴油发电机运动程序中活塞顶与进、排烟阀干涉(即顶缸),特意在活塞顶部署了4个0.5mm深的避阀坑。

       现代柴油发电机通常使用整体式铸造曲轴,材质为球墨铸铁或者铸钢。随着现代机械加工技术的进步,主轴的加工精度越来越高,甚至可以控制到微米级。曲轴的轴颈表面一般操作氮化技术,以提高表面硬度,提升耐磨性能,增强主轴的抗疲劳强度。

      现代的柴油发电机为了让更多的空气进入燃烧室,通常都使用涡轮增压、进气中冷、多气门(四气门)技术,可以把柴油发电机的容量和功率增强30%以上。部分乘用车柴油发电机还采用可变进气正时、可变气门升程、可变截面涡轮增压器、双增压器等技术,有效增强充气系数。现代柴油发电机大多采用ω型燃烧室,较小的面容比,中置喷油嘴,进气可以形成更强劲的进气涡流,燃烧更加稳定、柔和、充分,有利于提高柴油发电机的动力性能和排放水平。

      老式柴油发电机渗油是非常普遍的状况,现代的柴油发电机渗油情形大大降低,主要归功于先进的密封技术以及更精密的加工技术。曲轴的前、后油封,越来越多地操作 PTFE(含聚四氟乙烯高分子化学材料),密封性、抗高低温性能、耐腐蚀、耐老化性能更强,使用年限更长。在各密封面,因为精密的机加工技术,平面度非常高,通常使用普通的厌氧密封胶就可以实现良好的密封,不再采用密封垫构成。

      以康明斯柴发机组的动力KTA38系列为例,K38机体是康明斯大马力发电机(600~1400KW)的关键件,为V型12个缸构造(如图3所示);外形尺寸1563×866×701mm,缸体重量1360kg,壁厚变化大(较薄处8mm,较厚部位100mm),生产难度大。按康明斯技术标准,该型号发电机功率大于800 千瓦时缸体力学性能必须满足,试棒抗拉强度≥310MPa(铸件本体按图纸*的部位取样≥241MPa)、本体硬度≥HB187。机体加工后做气密性查看,不允许有渗漏。对于这样一个毛重大冷却转速慢,又要求周身致密的油道、水腔众多的机体,要增强其机械性能,如果采用简单的减少碳当量或增强合金是行不通的,康明斯发电机公司从选用合理的炉料配比、化学成分、改善增碳工艺,并控制Si/C、Mn/S等策略着手,较好地达到了增强K38机体力学性能的目的。

      灰铸铁的抗拉强度随着碳当量的提高而减轻康明斯室外柴油发电机。为保证机体的铸造性能和凝固时的自补缩能力,康明斯发电机公司选型3.95%≤CE≤4.05%进行工艺试验,试验证明缸体铸件单铸试棒的抗拉强度接近310MPa,但不稳定,如图4所示。

       为了增强提升机体的本体硬度和热疲劳性能,通过加入Cu、Mo和Cr合金,进行合金化,确定合金元素的较佳匹配,如表1。

      试验证明Cu对机体本体硬度的贡献比Cr大。由于缸体有热稳定性要求,Mo能增强铸件的热疲劳性能,即使价格比Cr昂贵,加入Mo还是十分必要的。Mn、Cu与Mo对提高性能有贡献,但R-Sq值与R-Sq(adj)值不高,合金化不是处置提高力学性能问题的唯一策略,还要靠其它工艺途径保证。

      因此,康明斯K38机体铸件的化学成分为o(C)3.2~3.35%,CE控制在3.95~4.05%,o(Cu)0.65~0.70%和o(Mo)0.25~0.35%。

      生产实践证明,相同的化学成分,由于熔炼工艺不一样、配料不一样,铁液的冶金品质完全不一样。生铁因为存在具有遗传性的粗大的过共晶石墨,在熔化流程中难以完全处置,使凝固程序中发生的石墨化膨胀用途削弱,铸件的致密性减小,铁液收缩倾向增大,同时粗大的石墨还加大对基体的割裂作用,减小材料的性能。增加炉料中废钢比例,铸件的抗拉强度明显上升。因此,康明斯发电机公司在生产中工艺规定废钢加入量必须大于30%、生铁加入量小于20%,其余为回炉料。

       废钢比例的增加,铁液的o(C)量必须靠增碳技术来保证。以前康明斯发电机公司采用碳化硅或优质无烟煤球作为增碳剂,增碳效果不明显,操作者抱怨较多,工艺规定的炉料配比难以严格执行。选型经过高温石墨化排查的增碳剂后,与第一批炉料一起加在炉底,增碳效果大为改善。经偏高温石墨化清除的增碳剂,碳原子从无序排列过渡到片状石墨的有序排列,片状石墨能成为石墨形核的较好核心,促进石墨化,减小了铁液收缩。康明斯发电机公司采用经较高温石墨化清除的增碳剂后,缸体致密性改进,机械性能提高,渗漏比例明显下降。

      提高Si/C比,铁液o(C)量相对较低,对基体的割裂作用减弱。o(Si)量相对较高,固溶强化提升,有利于铸铁强度的提升。高Si/C比的铁液有利于排查铸件边角处的白口。在CE相同因素下,高Si/C比的铸件,残留应力低,机体铸件在机械加工时也不易变形。

      康明斯K38机体本体硬度测定点有8个,每处的HB硬度差值不能超过30。因此,标准要求缸体薄壁处硬度不要太高,壁厚处硬度也不要太低。康明斯发电机公司将原始Si选定在1.85-1.90%之间,Si/C比控制在0.6~0.7之间,消除了机体各检测点硬度均匀性问题。

      Mn、S和P都是阻止石墨化的元素。只有少量溶入渗碳体的Mn可提升Fe、C原子间的结合力,促进形成珠光体,同时Mn与S可形成石墨非自发形核的核心MnS,减弱S阻碍石墨化功用,间接地有利于石墨化。S可以改善铁液的孕育效果,提升铸件的加工断屑性能。但石墨非自发形核的核心MnS必须维持在一个特定的范围,MnS增加过多,石墨会变粗,多余的MnS形成密集的夹渣,割裂基体减小铸铁的强度,影响铸件的致密性,增加缩漏倾向康明斯柴油发电机厂家

      因为锰和硫在铸铁中有相互制约的功用,故而在选择Mn含量与硫含量时必需考虑Mn/S值。生产实践证明,康明斯K38缸体Mn/S选用6-8较为合适,机体单铸试棒机械性能、本体硬度均达到康明斯技术标准要求,机体渗漏率低于3%。 

(1)为保证康明斯K38发电机缸体铸铁具有良好铸造性能与力学性能,CE控制在3.95-4.05之间,加入Cu与Mo进行合金化。

(2)控制炉料配比中生铁加入量不应高于20%,废钢不应低于30%。选型经较高温石墨化的增碳剂增碳,增碳效果明显,铁液收缩性小,缸体致密性增加。

(3)在提高力学性能的同时,控制Si/C比在0.6-0.7之间,Mn/S比在6-8之间,铸件缩松和缩漏弊端减小。

http://www.hsfdjw.com