市面上现有的标准发电机组输出容量上限,有时可能远远超出了您的较大需求,或与您较大的需求相关,而这正是操作并联柴油发电机可以排除的问题。 基本上,建议同一台大型柴油发电机组并行运转。然而,因为成..
2024-07-25柴油发电机起动程序中,由于大容量放大器电压跌落,可能会发生显示器数字起伏不定的状况,此时只需按下“信号排除”键即可消除此现象。在启动柴油发电机之前,应排查机组表面附着的尘埃、水痕、油迹及锈迹,检测各..
2024-07-25在现代社会,停电对单位危害很大,在大多数状况下,停电突然产生,通常出现在单位较需用电力的时候。因为公共市电供电要素存在一些不可预测性,停电总是存在一些不可预测性,但有一些适用绝招可以减小安全风险。停..
2024-07-24理想状况下,发电机应由开架式帐篷或箱体保护或置于地下室。如果发电机在运行时,请勿尝试为暴露在潮湿环境中的电器和装置供电。康明斯可以通过多种形式发电,例如工业柴油发电机,这些发电机为企业、工业以及其他..
2024-07-24任何在发电机附近工作或者在运转时都该当穿戴合适的装置。该产品包括护目镜、手套、安全帽等,保护全身健康、皮肤和安全。无论您是否拥有柴油发电机,还是打算选型柴油发电机,首先要通晓怎么样使用柴油发电机总是..
2024-07-23在选定断路器修理时,用户必须决定是否选取经过UL测试的设备。为了确保整体质量,建议用户选购断路器UL测试。对于未经过UL测试的产品,不能保证正确的校准。在选购柴油发电机的断路器时,需要考虑几种不一样的标准..
2024-07-23康明斯发电机组散热器溢水的损坏起因详细有汽缸垫因老化而破损、喷油泵封水套封闭不严或有裂纹、节温器失效、打气泵缸盖有裂纹、机油冷却器有损坏、散热器污垢太多等等。柴油发电机气缸垫在燃烧室附近有微小伤痕时..
2024-07-22当连接到发电机的负荷不超过以下值时,发电机在较佳状态下运行额定功率的40%-80%。因此,首先,正确购买安装容量是很重要的。 今天由康明斯电力为大家来分享柴油发电机多发的三个问题,如下:手动起动——发..
2024-07-22柴油发电机组运行时,有类似敲击的声音,但并未随柴油发电机温度升高而减弱,初步可判断为气缸声响。柴油发电机拉缸声是指当汽缸壁沿活塞运动方向运动时,产生几种不同深度的沟,引起气缸漏气。柴油发电机气缸响声..
2024-07-20柴油发电机的柴油品质不良、十六烷值过低或残炭量大时,柴油发电机增长期增大,燃烧不充分,也会致使发电机组的噪音过量。柴油发电机的燃烧噪音是由柴油发电机的燃烧过程决定的。柴油发电机作业程序的变化反映在爆..
2024-07-19柴油发电机容量选型计算公式
摘要:康明斯发电机组是指由柴油发电机作为动力进行发电的装置,很多状况下用户不清楚柴油发电机功率无法代替发电机功率的,由于柴油发电机使用时候有容量损耗这一说。其实容量要素0.8是行业中公认的计算比例,意味着100kw柴油发电机在安装到机组中作为动力的时候,大约能发电输出功率为80kw,而一部分动能由于带动发电机消耗掉了。因此,康明斯发电机公司在选型柴油发电机组的时候应该以发电机额定容量为装置基本功率,而无法以柴油发电机容量为基准,柴油发电机功率仅仅用于在选取步骤中的一项评价指标。 例如:某些非授权供应商会把柴油发电机功率作为发电机组容量来误导用户,柴油发电机100kw就能发电100kw这样的机器是不存在的,作为备载电源,柴油发电机也是有后备容量的,较大负荷下柴油发电机无法长时间运转,通常只能用1小时,于是发电机组有了1小时容量与12小时容量的说法。不管您是备载还是常用,柴油发电机功率肯定是大于发电机的(通常行业准则中比例为10~20%),只要有足够的容量,发电机才能负载运转。 装配发电机组前,康明斯发电机公司要根据安装规范来设计如何装配。● 机组噪音符合《城市区域环境噪音标准》(GB3096-93)、《工业企业厂界噪声标准》(GB12348-90);● 电气装配符合《国家电气装配规范》(GB50055-93/JGT16-92); 康明斯可以使用具有专业的计算软件以帮助客户进行正确的发电机组选择,有关该软件的主要信息请与康明斯当地代理联系取得。为了更好地理解软件里所操作的公式、计算及一些相关联的因素,请领会以下一些在发电机选用时必须考虑的内容: 一台发电机组是由发电机和发电机构造的,然而由于其各自的性能和特点的不一样,于是在成套发电机组后,把它们作为一个系统来整体考虑是非常有必要的。其公式如下: 举例:对于一台备用额定容量1000kw的发电机组(即P=1000),在连续运行的24小时内,800kw运转机了13小时,900kw运行了1小时,1000kw运行了1小时,500kw时运转了6小时,300kw时运行了3小时。 康明斯发电机组的容量分为备用功率、常用容量和连续功率。定义如下: 典型应用:建筑物的后备电源(如上述例题中所述的运行工况)● 在全部的运转周期内,发电机组的负荷是变化的,并且总的负荷要素不超过70%每运转12小时允许超载10%运行1小时 典型运用:与大电并机运行调峰、热电联产等●在100%恒定负荷不限小时数持续运行,或者在变化的负荷下运转,总的负载条件70-100%。 典型应用:发电站及与电网并机运行、基载运转模式、热电联产等 在进行发电机组选择及计算时,必须清楚地了解发电机组的实际应用及可能的运行负荷情形,准确选取按以上容量定义的发电机组。 当海拔高度超过1000m时,每超过100m将会使输出无力1%。具体有关的修正值请与Cummins代理联系。 当发电机的进风温度超过40°C时需要对输出容量进行修正。 盐雾或其它腐蚀性的元素会破坏发电机绕组的绝缘而致使发电机的事故,在这种环境下工作的发电机在制造时需要对绕组进行特别防护。 除非发电机完全密封,否则潮湿的空气会在发电机上凝结露水,运转中的发电机组因为机器温度的升高和空气的流通可以避免凝结水的形成。当在高湿度的环境状况下,当机器处于停机状态时,建议在发电机上加装一个防潮加热器以使温度高出环境温度5℃。 通过冷却风扇带入的灰尘(如铁屑、沙子等)会伤害到发电机,造成短路。同时这些灰尘堆积到一起也容易吸收空气中的水份而使发电机受潮。如果发电机在这种环境中工作,一般需用加装发电机的进风过滤设备,制造厂可以提供这些装备供选购。 任何时候,当对在稳态运行中的发电机组进行加载或卸载时,发电机的转速、电压和频率都会产生一个瞬时的变化,然后又恢复到稳态运行状态。这种变化的幅度取决于瞬时加载的有功和无功功率大小,同时也与发电机电压调节器的设定、发电机的总容量、动态特征、装置中其它负荷性质有关。通常的工业运用可以接受30%的瞬间电压降,但有些敏感性的负荷只可接受比较小的瞬态电压降(如备用电源,医疗装备,变速器等)。 不同的国家具有不同的此类标准,有些行业可能要求发电机组能接受一步加载100%的能力。ISO8528-5规定了瞬态反应的标准,共分4个性能等级,如下表: 在发电机组选用时,必须考虑加载程序及其瞬态的响应能力,大多数的涡轮增压带中冷却器的四冲程发电机都无法接受一步突加100%的负荷,所以请确保所选取的发电机组能满足实际应用中负荷的需求,图2所示是ISO528-5-G3要求的发电机组加载能力,根据发电机的BMEP及现场的负载大小可得知加载的措施和次数。 注:当系统可承受的瞬间频率和电压降没有特别要求或符合NFPA 110标准时,康明斯发电机组可承受100%负载一次投入。 首先,通过TMI找到发电机的BMEP(Brake Mean Effective Pressure)值,单位为Bar或Psi如果负载的大小位于“First Load Step”曲线以下,则可以一步完成这个加载流程。例如:1000kw的发电机的BMEP为16.42Bar,可以查到发电机可以一步加载的最大功率为50%左右的额定容量(即500kw),瞬间的电压、频率变化和恢复时间等参数符合ISO8528-5 G3的要求。 电压调整器是决定电压/频率变化和恢复时间的一个重要部件。在当负载增加时来维持发电机电压于一个恒定的值。 对于非并机运行的发电机组,在接到起动信号后,要在10秒内完成起动并达到额定的速度,同时具备带负荷的条件,必须做到如下: 注:不一样的环境温度可能会需要不一样的蓄电池类型。② 如果是空气启动方式,则必须具有足够的压缩空气和较小100psi(689.5kPa)的压力2.燃烧空气进气温度至少应为21°C(70°F)。 线性负荷是指电流和电压加上负荷后波型呈正弦波,包括: 电流和电压的波型为非正弦波的负荷为非线性负载,详细包括:◇ SCR系统运用于直流马达,交流变频驱动(VFD)等,一般SCR装置需要大功率的发电机,直流马达的速度变化会致使发电机输出容量因数的变化。◇ 成型绕组的线圈可以供应更高的机械支撑强度,以承受由于SCR负荷导致的浪涌电流对线圈的冲击,并且较低的发电机温升也可补偿因为SCR负荷发生的热量。◇ 由于发电机组是一个有限容量的电源,SCR会致使发电机的电压和电流波形失真严重,电流的波形失真会致使装置装置的谐波共振,并使马达和发电机的线圈发热。◇ 当SCR负荷容量不超过柴油发电机组容量的66%时,可确保发电机组正常运行和防止因为谐波使发电机偏热。◇ 备用电源能在电力中断时供应其储存的电力,发电机的大小必须满足备用电源的容量,而不是备用电源所带的负载容量。◇ 电焊机会导致发电机的电流变化不稳定,这种电流的波动会使电压波形失线所示),当操作电焊负荷时可能需要对发电机的容量做较大的修正。 非线性负荷会产生谐波电流而引起发电机的波型畸变,单相的非线性负载一般会发生较高的三次谐波电流,从而引起较高的对地电流。2/3节距的发电机由于低的零序电抗,可以降低电压的波形畸变。(1)如果单相负荷加于一个三相发电机上,除非平均分配这一单相负荷于每相上,否则会导致发电机三相电压的不平衡,当三相电压的不平衡度超过2%时,可能对一些要求特别高的负载会有一些影响,或者使正在满负荷运转的马达容易太热。柴油发电机带负载试验的目的和时机
为确保重要生产装置的安全,重要生产企业通常都会设置康明斯发电机组作为应急电源,而柴油发电机的维护和维护是保证其是否能在紧急情况下正常运转的关键。如何才能检查维保和保养是否到位,柴油发电机组的可靠性是否合格?因此,康明斯公司保养规程规定柴油发电机应当每周做空载试验,每年做带负荷试验。试验的目的是为了对柴油发电机的动态特点进行摸底,了解柴油发电机的起动特点参数、调整特性参数、负载冲击特点参数,并且根据这些参数调整损坏情形下的保安装置启动顺序,保证故障状况下柴油发电机具备可靠运转和适应负荷的能力。通过人为地在发电机上放置负荷来设置。负荷在预先安排的时间以增量kW负荷步进施加,这种增加将连续到发电机以110%运行,此时负荷逐渐减小。每次增加kW负荷时,都会记录发电机临界性能的测试读数。并记录发电机处理升压的能力,以及它在可能的较大输出水平和持续时间段内继续运转的能力。这些测试确认柴油发电机组的基础组件处于较佳运转状态,随时可以使用。在进行负荷银行测试时,使用专业装置人为地将负荷施加到发电机上。每台柴油发电机在使用之前都要进行了电阻负载测试,以确保柴油发电机符合要求的高标准。在成功完成负荷箱测试之前,则不该当马上操作发电机。测试以递增的间隔在阶跃负载上运行,直到较终在满负载下运转,以证明发电机的健康现状并确认其负荷能力。因此,康明斯公司强烈建议您对柴油发电机进行年度负荷测试,若无带载测试条件的单位可采用假性负载机来进行试验,以确保完全可靠和可使用的电源,能够在其较大主要负载下运行。当您的下一次关键主电源断电并需要紧急电源时,而柴油发电机已经过负荷测试,就可以放心操作它了。柴油发电机的运行的可靠性是企业生产的最后生命线,因此其实载试验的安全性尤为重要。在没有借鉴的前提下,应为成立专门的试验小组,再由运行部、设备部及安监分部电气专业人员构成试验小组,以保证这项试验有效、可靠地进行。为保证试验的顺利进行,试验小组负责编写规范的启动举措、操作票,对试验作业负责,并将试验结果攻略以供所有运行人员学习、参考,此外在试验成功后对相关的规程、标准操作票进行修改,以达到闭环管理的要求。当班运转人员根据方法对策、运行规程及操作票,并在试验小组的指导下负责试验阶段的运行使用。通常柴油发电机不得与保安段并列运行,对于尚未做过柴油发电机并网带负载运行的用户,应在停机或启机前做首次试验是比较合适。这样即使在试验程序中发生冲击,使一段保安段失电,甚至是保安段进线开关失灵情形下锅炉段或汽机段状况发生,停运发电机组不会受较大危害。若用户拥有多台康明斯发电机组的装备,可在每一台发电机组首次试验成功后,同台发电机组再做正常运转情况下的试验。柴油发电机的布置容量足够供应使机组安全停运的重要装置操作,在带负荷试验中,柴油发电机组启动并网后应小幅度调节,使其出力慢慢增加至持续容量值,并严密监视就地及CRT表计数据,使各项指标特别是容量及电流不超过额定值。运转到规定时间(通常为20分钟)后,再慢慢调小出力,直至容量为0,检测试验保安段运行正常后,分闸KO开关,停运柴油发电机。柴油发电机水力、电力及电涡流测功器
为了绘制柴油发电机的特性曲线,需要专门的试验测试因素。由于柴油发电机是动力机械,在热功转换的工作流程中对外输出功的同时,会引起强烈的震动。故而,为了正确测定各必要的性能数据,需要将柴油发电机和必要的测定装备及系统固定在坚实而又防震的专用基本上(图1),基本的振幅一般要求不得大于0.05~0.1mm。为了测定柴油发电机的输出功率或转矩,将柴油发电机和测功器在台架上通过联轴器对中连接,并用转速传感器测定主轴或与曲轴同轴连接的测功器轴的速度。由于试验探讨的内容不同,所需要的测试装置有所区别,但是较基础的测试装备有测功器、油耗仪、速度表及排放测试设备等。除此之外,试验台还需要专门的水箱宝系统以保证试验时柴油发电机的工作温度保持在设定的恒温状态,以及向柴油发电机供给所需燃料的燃料供给装置,试验室专用通风装置、消声装置等辅助系统。测功器是专门用来测定柴油发电机动力性指标的装置,具体测定输出转矩Ttg,同时检测柴油发电机的转速n,然后用公式Pe=Ttgn/9550,求得柴油发电机的输出容量,并根据功率和平均高效压力的关系式,计算平均高效压力Pme。测功器能吸收柴油发电机输出的功,利用这一特点可任意改变柴油发电机的负荷和转速,由此模拟柴油发电机的使用工况。根据测功器吸收功的原理不同,将常用测功器分为水力测功器、电力测功器和电涡流测功器三种。水力测功器是通过在柴油发电机带动测功器转子同步旋转时由转子和外壳构造的涡流室内水的旋转运动,将测功器外壳在水的摩擦力作用下摆动一个与输出转矩成正比的角度,由此检测柴油发电机的输出转矩。涡流室内旋转运动的水量越多,水层越厚,摩擦力就越大,外壳摆动角度增加,则外壳上固定的测力机构的读数随之增加,表明水吸收的机械功越多。当柴油发电机稳定运转时,外壳的摆动角度不变,测功器读数稳定(图1)。水力测功器因为价廉、工作可靠、体积小等优势曾在国内外被广泛运用。但随着智能化程度及测定精度要求的不断提高,它逐渐被电力测功器或电涡流测功器所取代。电力测功器如图2所示,当柴油发电机带动直流发电机的转子在定子磁场中转动时,转子切割磁力线而产生感应电流,感应电流的磁场与定子磁场相互功能发生电磁力矩。受该力矩的用途,浮动支承在轴承上的定子外壳摆动一个与该电磁力矩成正比的角度。在定子外壳上固定测力装置,检测此时外壳摆动角度时的力矩大小,该力矩大小与柴油发电机加载在转子上的转矩相等。通过改变定子磁场的大小可任意调节该测功器吸收的柴油发电机输出转矩的大小,从而达到既调整负荷又测定输出转矩的目的。电力测功器虽然装置较复杂,价格高,但因为能销售电能,反拖柴油发电机,而且工作灵敏,测量精度高,因而得到广泛运用。电涡流测功器也是目前常载的一种测功器。它主要利用涡电流效应将柴油发电机输出的机械能转变为电能,再将电能切换为热能。该测功器吸收能量的详细部分是制动器,由转子和定子结构(图3)。定子包括铁壳、涡流环和励磁线圈。而铁壳、涡流环、空气隙和转子组成磁路,当外界直流电源向励磁线圈供电时,在该磁路上发生磁力线中的虚线)。柴油发电机驱动转子旋转,此时由于在磁路中转子外缘涡流槽的存在,在空气隙处磁力线密度发生变化,因而在涡流环内发生感应电动势而形成电涡流。此电流与所产生的磁场相互功用形成电磁转矩,使浮动在支承上的定子摆动一个角度。调整励磁电流,即可改变电涡流强度,从而测功器所能吸收的机械功不同,定子摆动角度也不一样,由此既可检测转矩又可调整负载。由于涡流电路有一定电阻,在涡流环内存在电能损耗,使涡流环过热,故而需要冷却液来强制冷却涡流环。这种测功器操作简便、组成紧凑、运行平稳、测定精度较高,但是不能反拖柴油发电机,而且能量不能销售,成本也较高。柴油发电机喷油泵、喷油器及柱塞偶件实验调试对策
摘要:为**燃油装置调试作业的顺利进行,明确燃油系统的调试因素、措施、程序、质量要求,康明斯公司特在本文浅聊柴发机组燃油装置的调试策略,用于指导柴发机组燃油系统安装结束后的分系统试运行作业,以确认系统及辅助设备安装准确无误, 装备运行性能良好,控制装置工作正常,装置能满足柴油发电机组下一步调试和整套起动需要。柴油发电机燃油供给系统的功能是根据柴油发电机的工作要求,定期、定量、定压地将雾化品质良好的柴油按一定的喷油规律喷入燃烧室内,并使其与空气迅速而良好地混合和燃烧。柴油发电机燃油供给装置,特别是喷油嘴、喷油嘴和调速板等性能的好坏,对柴油发电机的工作有很大的危害。有人把喷油泵比作柴油发电机的心脏,可见它在柴油发电机中的重要地位。柴油发电机燃油供给装置中有不少精密零件,各精密件之间的配合要求极高,而且承受着较大的机械负载与热负荷,故而柴油发电机燃油供给装置的使用与修理具有其独特之处。为保证柴油发电机工作良好和延迟供油系统各主要零件的使用年限,有必要掌握柴油发电机燃油供给装置的正确使用、常见零件及因由、检修方案等,以便在维修时查验正确,办法得当,维修迅速。柴油泵、喷油器已经过试验台调试,柴油发电机技术现状良好,并已进入热运转状态;柴油泵与驱动装置正确连接,齿轮泵注入清洁燃油;节流阀控制杆与连接杆脱开,以便能自由动作;速度表装到燃油泵计时表驱动轴的连接设备上;查看所用仪表(如压力表、速度表等)是否正常。怠速调整从PTG速度控制器弹簧组件的盖上拧下螺塞。通过旋转怠速调节螺钉调节柴油发电机的怠速速度(600±20)转/分。怠速调节后拧回螺塞;装有MVS调速器的燃油泵,怠速调节螺钉位于速度控制器盖上,怠速调节后应拧紧锁紧螺母,以防空气进入。通常经试验台调试的喷油泵装机时,不需高速调整,若需要调整,则仍用增减高速弹簧垫片的举措;调速器断开点速度应比标定速度高20~40转/分,以保证调速器在标定转速前不会起限制作用;康明斯柴油发电机的较高空转转速通常高出标定速度的10‰。此项调试可采用转矩法,冷车时拧人摇臂上的调整螺钉使柱塞下移,在柱塞接触到计量室锥形座后再拧约15°,将残存在座面上的燃油挤净,然后将调节螺钉拧松一圈,再用扭力扳手拧到规定转矩值,并拧紧锁紧螺母;热车时再按上述办法进行校正性调试。喷油正时调试是根据活塞位置与喷油泵推杆位置的相互关系,采用专用的正时仪进行的。喷油正时调试的措施是,转动带轮使1、6缸活塞位于上止点,在活塞行程百分表测定头下面的测杆与正时仪标尺90°刻度线对齐时,将推杆行程百分表调零;逆时针方向转动皮带轮,在1、6缸记号转到距标尺标定点约处时移动活塞百分表,使其测定头压缩5mm左右,然后将其固定。接着缓慢转动带轮,在活塞行程百分表指针转到较初顺时针转动的位置(上止点)时将百分表调零;继续逆时针转动带轮,当活塞行程百分表检测头下面的测杆与标尺45°刻度线(相应曲轴位于上止点前45。)对准时,顺时针转动带轮,直到活塞行程百分表至规定读数,根据检测的差值,调整摆动式挺杆销轴盖垫片的厚度使喷油正时符合要求。详细检验柱塞偶件的密封性和变形状况,主用滑动性试验查验其磨耗和变形,用压气和真空吸力检查密封性。将柱塞偶件浸泡在清洁的柴油中,把柱塞在柱塞套内来回抽动清洗后,将柱塞偶件倾斜45°,抽出柱塞配合的圆柱面的1/3或柱塞全长的2/3长度,并将柱塞旋转一下,如图1所示,放手后柱塞能无阻滞地靠自重缓慢滑进柱塞套内为正常。再将柱塞抽出,转动任一角度后,用同样的策略作滑动试验,其结果应当相同。柱塞在柱塞套内滑动过快,说明二者配合间隙过度,若滑动发生阻滞,说明配合间隙过小、柱塞有微量弯曲、柱塞受到严重划伤、柱塞螺旋槽或斜直槽处有毛刺、柱塞套变形等。使用这种柱塞偶件会影响油量调整齿杆移动的灵活性,更严重时,会发生咬死现状。因此,除毛刺有时可以修理外,这类柱塞偶件一般必须予以更替。通常应在密封试验台上进行。为了方便其见,也可用简易密封比较法进行。用左手食指、大拇指和中指分别堵住柱塞套顶面出油口、进油孔和回油孔,右手轻轻拉出柱塞,以不露出下肩为限。在拉出柱塞过程中,若感到有明显吸力,并放松柱塞后能很快吸回到原来位置,如图2所示,说明磨耗较小,配合良好。转动柱塞,使柱塞斜槽操作段(柱塞回油槽偏离柱塞套上的回油孔)对准回油孔位置,用手指堵住柱塞套顶面出油口和进油孔,将柱塞抽出10mm用力将柱塞推进,当柱塞顶面到达回油孔上边缘时观察回油孔,若没有油沫及气泡冒出,如图3所示,为密封性良好。将柱塞推进柱塞套后,保持5s,然后放开柱塞,柱塞能缓慢自动弹出为正常;否则,为密封不佳。在喷油器上试验时,将各缸出油阀取出,出油阀座与衬垫保留在孔内,装上出油阀紧座,放尽空气。将喷油泵试验器的高压油管接在出油阀紧座上,如图4所示。移动调节齿条或拉杆,使柱塞处于较大供油位置,并转动喷油咀凸轮轴,使被检验柱塞上升到供油行程中间位置。操纵喷油咀试验器,使油压达到20MPa时停止泵油,此后油压从20MPa下降到10MPa所需的时间(s)在下述公式计算范围内为合格。在修理时,根据各单位的详细情形和要求,可规定时间少于16s~29s者应予更换。在维护中,时间少于2s者才予更换。用一只29.4MPa的压力表,逐次接到柴油发电机喷油嘴高压油管接头上,转动喷油咀凸轮轴并压动柱塞,当喷油器油压升高至24.5MPa时,停止转动凸轮轴,此时,若其油压能保持3min~5min无明显下降,则说明柱塞偶件密封性良好。用一个不通孔的螺母,将喷油咀上的高压油管堵死,然后用一撬扛均匀地撬起喷油器挺柱,使喷油器柱塞顶部柴油处于压缩状态,若此时总是撬动不用多大劲,感到阻力不很大,说明柱塞偶件磨耗严重,密封性差,不宜继续操作,须替换或维修。柴油油机房面积计算及尺寸间距
装配举措的第一步应是选定设备规划地点,通常情况下,装配地点的选取多数是以操作的方便性和配电连接的经济性及有利于装备的使用和保养等为依据的。此外,油机房防火门的宽度或高度必须大于装置尺寸,便于柴发机组的进场吊装。而柴发机组的辅助件(如油箱、消音器)无法离装备距离过远,否则可能会出现压力损失,导致进油压力和排烟背压的增加。因此,除了占用大量空间,还必须合理科学的布置机房。康明斯公司在本文讲解了在柴油柴油发电机房初建时应配置的设备大小、 柴油发电机组基础外形尺寸示意图如图1所示,不同类型康明斯柴发机组的外形尺寸与数据如表1所列。柴油发电机组尺寸大小必须小于客户图纸所提供机房空间尺寸要求,否则会在现有的空间及环境要素的安装与运行产生不佳后果。因此,实际外形尺寸尽量以毫米为单位,更精确的参数能防止建造机房时产生失误。 应选取平整、干燥、通气良好的地方,远离易燃易爆物品、高温、湿度过大、腐蚀性气体等场所。同时,确保地面能承受足够的重量。 机房建设应符合消防规定,包括合理的通风系统,以及能够承受一定强度的构成和耐火材料。机房内应设有洁净区和污染区,且所有装置应标注清晰,便于使用和维保。(2)如图2所示,当柴发机房只设一台机组时,如果机组功率在500kW 及以下,则通常不设控制室,这时配电屏、监控系统宜设计在发电机端或发电机侧,其使用检测通道的要求为屏前距发电机端不应小于2m,屏前距发电机侧不应小于1.5m。(3)对于单机容量在500kW 及以上的多台机组,考虑到运行维保、管理和集中控制的方便,宜设控制室。一般将发电机操作系统、机组操作台、动力控制〔屏〕台及照明配电箱等放在控制室。控制室的布置与低压配电室的设计的技术指标一样。(4)在机房内,柴发机组宜横向布置(即垂直设计),使其中心线与机房的中轴线垂直,使用管理方便,管线短,设计紧凑。当机房与控制及配电室毗邻布置时,发电机出线端宜规划在靠近控制及配电室一侧。 机房应有良好的通气装置,确保空气流通。通气口应设置在上风面,预防尘埃、沙土、雨水等进入。通气管道应保持清洗、无泄漏。 需通气良好,发电机端应有足够的进风口。柴油发电机端应有良好的出风口,出风口面积应大于水箱面积的1.5倍以上。 柴油发电机房不宜设计在人员密集场所的上一层、下一层或贴邻。如果需要与其他部位分隔,应采用耐火极限不低于2小时的防火隔墙,楼板采用不低于1.5小时的不燃性楼板。隔墙上如果有门,应设置甲级防火门。 机房内应设置火灾报警系统和与柴油发电机容量及建筑规模相适应的灭火设施。如果建筑内其他部位设置自动喷水灭火系统,机房内也应设置。 若机房内设置储油间,其总储量不应大于1立方米。储油间应采用耐火极限不低于3小时的防火隔墙与发电机间分隔。 此外,柴油发电机组还应符合相关标准和国家法律法规,机房内装置应按期维保和维护,确保持久、稳定、安全运转。 发电机组的工作会产生热量并将其散发在机房里,从而房间的气温会升高,因此,柴油发电机房的通气是必需的。它可以有效地控制机房的升温,并提供给发电机以充足的,清凉、新鲜的空气。通气装置布置如图3、图4所示。 良好的通风需要足够的空气流入和流出,并在房间内自由循环。因此,机房必须足够大以便让空气自由循环,这样机房内的空气气温就可以保持均衡并且没有滞留气体如。 为了让新鲜空气进入机房,应有开向户外的进风口或者通向建筑物另一部分的通气口,以便让足够的空气进入。在较小的机房可用通风管把空气抽入房间或直接地送到发电机的空气进气口。此外,应有一排风口开向墙外以便热空气从该口排出。无论进风和排风都应有挡风雨的百叶窗。这些窗可以是固定的,但较好在气温低时能调整。对那些自动启动的发电机,百叶窗较好也能自动操作,使它们在发电机启动时立即打开。 在计算进风通气口的大小之前,必须考虑到散热器冷却空气流量和发电机组在额定负栽时风扇取得的静态压力。在标准的机房装配,散发的热量已计算在散热器空气流量中。对那些把散热器安装在远处的机房,机房冷却空气流量是由发电机、交流发电机和排气系统任何部分向周围空间散发的总热量来计算的。 当柴油发电机在额定容量操作时,发电机和交流发电机对冷却空气的需求量在型号文件中已说明。排气装置的散热取决于在房间内排气管的长度及使用的隔热材料,于是在计算房间的空气流量时,这些热源散出的热可以忽略不算。 在决定了进入房间的空气流量之后,可以计算通风入口在外墙应开多大。通风入口必须足够以便反气流阻力不会超过0.4inH2O。空气滤清器、窗幕和百叶窗的阻力值可以从发电机组制造代理商取得。 当发电机和房间是由一台固定在发电机上的散热器来冷却时,出气通风口必须大到足以让所有在房间内流通的空气排出,不包括相对少量的进入发电机入口的空气。 柴发机房的空间应充分考虑柴发机组及附件的体积,保证发电机组和附件有足够的安装空间和散热空间。典型单机布置安装如图5所示。 柴油柴油发电机房间面积的大小要根据设计容量的大小,来确定房间的面积,一般只要装置放进去之后四周留有检验通道,如果有配套的柜子,还有预留柴油发电机控制柜子的位置,满足装置及附属物摆放。 要方便柴油发电机装备进场,尽量选取靠近通道的房间,让机组可以整机顺利就位。尽量避免拐弯、台阶等不利于柴油发电机设备进场的要素。 柴发机房通用间距如图6所示,主要参数参考表2所列。当发电机组按水冷却方法布置时,柴油发电机端距离可适当缩小;当发电机组需要做消声工程时,尺寸应另外考虑。 以康明斯发电机组为准,常规数据如表3所列。(1)宜设计在首层或地下一层靠外墙部位,宜靠近大容量应急负荷(如消防泵房等)或与低压配电室毗邻较好,靠外墙利于进新风排废风气,注意风井在一层的位置。(2)柴柴发机房必须要设储油间(不超过8h用量),及气体灭火储藏间,均应为防火墙与发电机房相隔,设甲级防火门(也应隔音)门应不小于900。 在民用建筑电气规划中,柴发机房选址是设计措施重点。结合可靠,安全,经济着眼点出发,根据工程特征,负荷归类,负载功率,周边环境,供电可提供条件及后期运转维护等要点,合理考虑办法设计。柴油柴发机房布置与布置的好坏,直接影响到机组是否能够正常稳定的长久运转、是否能满足周围环境的噪声要求、是否能方便的检测发电机组等问题。于是设计与设计一个合理的机房,不论是对业主来说还是对机组而言都是重要的。柴油发电机装配品质、试验因素和测定项目
摘要:柴油发电机装配严查是一项关键的程序,用于检修柴油发电机的安装状况并记录察看结果。通过对柴油发电机的装配程序严查和试验、检测,可以确保装配作业的品质,减小潜在的问题和故障。同时对本文所述柴发机组检查项目进行记录,相当于提供和保存有力的证据,证明柴油发电机在安装流程中是否符合相关的安全标准和要求。因此,康明斯发电机服务中心在本文中为大家讲解柴油发电机组在施工场所的检查项目以及装置品质现场试验内容。(3)柴油发电机组装配稳固,地脚螺栓应采用“二次灌浆”预埋,地脚螺栓外露一致。柴油发电机组与底座之间要按设计要求加装减振设备;(4)柴油发电机组的油泵、油箱、水泵、水箱装配牢固、平直,燃油管路装配平直,无漏油、渗油现象,燃油管涂漆棕红色,管路分支部分有红色流向箭头;(7)电源线及信号电缆布放符合规划要求,不得将交、直流电源线及信号线)柴发机组监控装置正常,大电和油机切换正确无误;柴发机组主体、基座应可靠接地,配套的油箱也应可靠接地;(9)油机监控开通后,应能实现油机的自动起动、停机、自动调节输出电压、频率、故障显示及油位显示等。(11)开放式柴油发电机组应安装在室内符合规定的基础上,并应高出室内地面0.25~0.30m,外形如图1所示。移动式柴油发电机组应处于水平状态,放置稳固,其拖车应可靠接地,前后轮应设置卡住机构,外形如图2所示。室外使用的柴发机组应搭设防护棚。 (12)柴油发电机组电源必须与外电线路电源连锁,严禁与外电线台以康明斯油发电机组并联运转时,必须装设同步设备,并应在柴发机组同步后再向负荷供电。(4)可采用纯阻性负荷或容量因数大于0.8的感性负载;负载变化的等级为空载、25%、50%、75%、100%额定容量。(5)测量容性负荷时,按照柴发机组输出较大有功容量的100%配置阻性负载,并按照功率因数超前(容性)0.95配置相应的容性负荷。 除另有规定外,各电气指标均在柴发机组操作界面输出端考核。 柴油发电机组的随机附件包括散热水箱、油箱、油管、底盘、电瓶、电池导线、消音器、减震垫、三滤(空气滤芯、机油过滤器、柴油滤芯)、排烟管、波纹管、连接法兰。这些属于常规附属件,还有些定制型附属件,包括:低噪音、防雨箱、移动拖车、水套加热器、全自动控制器等。以下是对柴发机组随机附件和定制型中详细零件进行系统性讲解: 一般运用户要求而装配主回路断路器,以保护发电机组和第一级电路之间的电路,这些断路器却无法保护发电机自身。为保护发电机组,模块式和电源回路式的断路器应适当安装,构造如图3所示。模块式断路器可在各种电流额定值下得到。同时也适用直接安装在发电机组的输出盒内。电源断路器型号有125-4000安培之间的各种规格备选。模块式断路器耐用但价格贵一些。电源断路器一般安装在靠近发电机组的独立的仪表板上,而不是装在自身上,这是因为他们的体积和震动的敏感性决定的。当主回路断路器必须装配时,计划中应包括断路器类型、分励分类和额定值。 发电机的起动和发电机组控制的电池装置也许是要求较严但又较可能失效的子系统。正确的选定和保养电池和电池充电器对提高装置可靠性是非常重要的。在200kw以下的发电机组中,电池用于发电机起动和发电机组控制中。装置包括电池、电池架、后备时可用普通电源充电的浮充电器以及发电机驱动的充电机,它可以在发电机组运行时提供直流电流,同时对电池充电,充电流程如图4所示。① 当发电机组并联装配时,每台机组的电池常常是单独安装的,以给并列装置提供控制电源。并车系统的制造商应相互协商以确定发电机控制电源装置的适应性,由于电压峰值会影响一些并列控制装置,因此并联装备需要使用分离式电池。③ 装配位置应便于维修电池和防范接触水、尘埃和油污,在有地震的地方,电池架应制成特别的构成以防电池液泄漏和电池破裂。 随柴油发电机组提供的一般是铅酸电池,这是操作较广泛的电池类型,相对较便宜,在-18℃到38℃温度范围之间有良好的性能。铅酸电池该当安装在发电机组附近。铅酸电池可能是免维保式或者是大容量式。免维护式电池维保要求低但不容易监控。所有的铅酸电池都需要在操作前充电,即使是免维护电池也无法无限期地充电。大容量型电池在必要时需要添加电解液在刚添加电解液之后,电池只能达到50%的充电程度。发电机组通常随机配置的为大功率的需保养的铅酸电池。 浮充充电器能全自动的对柴油发电机启动电池进行监测和充电,当充电器监测到电池电压低于预先校准值时,会自动发出一系列电子脉冲对电池充电,在充电的步骤中,充电器继续对电池电压监测,当测定值高于合适的极限值时,充电器将停止充电,直到电池电压降到低于校准的极限值,将再次充电。如此循环。 浮动充电电压力详细影响电池正极板栅的腐蚀速率和电池内气体的排放,当电池的浮动充电压超过一定值时,板栅腐蚀进一步缩短了电池的使用年限。增加的浮充电流将导致更多的剩余气体通过排气阀排放,引起电池流失。平衡充电时,气体产量是浮动充电时的几十倍,因此平衡充电时间过长会加剧电池的流失和栅格的腐蚀,从而故障电池。 发电机组在很多运用中使用了辅助启动设备。通常自然吸气柴油发电机可以在0℃以上(不需要辅助装备)非常顺利地起动。而增压柴油发电机具有过低的压缩比,在4-7℃以上(不需要辅助装备)启动时才非常顺畅。对柴发机组而言,可选用如防冻液加热器、机油加热器等辅助起动设备。 机油加热器安装在柴油发电机曲轴箱上,所在位置如图5所示。它加热柴油发电机油底壳内的机油,便于柴油发电机在低温下起动。 为了保证发电机组在低温下能很快的启动,介绍采用防锈水加热器,安装位置如图6所示。柴油发电机缸套周边和缸盖内都有冷却水,加热器加热柴油发电机水箱宝并靠对流使柴油发电机内的冷却液全部加热。特别对自动化发电机组和备载发电机组,为了确保在10秒钟内起动,柴油发电机冷却液温应至少保持在49℃,室温保持在10℃。 消音器通常为蜂窝式工业消音器,大多工厂作为标配。柴油发电机消声器形式规格很多,目前用在柴油发电机房低噪声工程上的主要由直管式消声器和片式消声器两种。其消声性能具体与扩容控流通道形式、长度及吸声材料的性能有直接关系,直管式消声器是阻性消声器中简易的一种。 在过热、高流速燃烧废气的周期性作用下,柴油发电机的排气管系统会发生振动和热膨胀位移。当管系热膨胀位移发生的应力远超过排烟管系固定支撑处材料的强度极限,将对固定支撑造成破坏。因此,大型柴油发电机在管系布置中一般采用排气波纹管来补偿排气管系因热负荷发生的热膨胀位移,从而消除排烟管系因热膨胀位移发生的巨大应力,保证柴油发电机可靠运转。 减振垫安装于底座与水泥基础之间,起到吸收震动的功能。根据形状分为方形减震垫、碗形减震垫。减震垫的主要材料是天然胶、氯丁胶以及丁晴胶以及上下壳体,发电机组中的减震垫要求应用范围大约在25hz,柴油发电机组发出的电是50hz以及60hz,只要低于这个数值1倍左右就算达标,比较差的减震垫的材料已生胶为主,手感上无弹性、载重压缩比呈现非线性,以及表面较为粗糙,而且容易老化。 柴油发电机组各独立电气回路对地及回路间应能承受试验电压数值为表1规定、频率为50Hz、波形为实际正弦波、历时1min的绝缘介电强度试验而无击穿或闪络现象。 2、起动检测 常温条件下向自动起动机构发出自动启动指令(模拟大电市电中断供电、模拟电网市电电压下降至规定值等),观察柴发机组是否自动起动、升速、建压、合闸供电,运行1min,重复进行3次,间歇时间小于20s;柴油发电机组自动起动后,观察柴油发电机组是否自动加载;加额定负载后,观察柴油发电机组是否能在20s内带额定负载运转;检查低温启动装置的电路、管路、油路等是否畅通。 通过模拟的办法在柴发机组的控制屏上对相应的传感器输入信号接入端子给人为的闭合信号,观察柴油发电机组能否自动保护停机或告警;柴发机组应具有的保护包含:机油压力低、过欠电压、超欠速、水温高、发电机温度高、过载、短路保护、逆功率(并联时测)、过电流等。 柴油发电机组额定长行功率的连续运行试验:(1)柴油发电机组在额定工况下满载运转11h后,紧接着过载10%运转1h;(2)每隔30min记录一次功率、电压、电流、功率因数、频率、柴油发电机冷却出水(或风)温度及机油温度(在仪器板温度表上读取)、添加燃油时间等。(3)观察柴发机组是否发生停机、降功率等不正常情形;柴油发电机组铭牌上未标出额定功率数值的,发电机厂商应提供相应的常载功率数值以供测试。 柴油发电机组按0%→50%突加负荷,然后从50%→慢慢加至100%(不小于5%),最后100%→0%突减负荷,重复进行三次。取三次结果的平均值。 柴油发电机按100%--0负载突减特性测试。使用电能质量分述仪表记录波形,查看柴发机组能否保持稳定的输出,是否引起柴油发电机组保护性停机,以及是否出现频率异样、电压异常导致的电源设备的报警甚至停机。7、容性负荷能力测定(YD502新的测试方法,arctan0.95计算要求加入) 测量容性负荷时,按照柴发机组输出较大有功容量的100%配置阻性负载,并按照容量因数超前(容性)0.95配置相应的容性负载。柴油发电机组在额定工况下运转1h。每隔30min记录一次功率、电压、电流、容量因数、频率、柴油发电机冷却出水(或风)温度、机油压力和发电机绕组温度。 主要测试柴油发电站实载能力、冷热态电压变化、燃油消耗率和机油消耗率等指标。柴发机组先以额定容量带载运行2小时,紧接着以110%额定容量运转一小时,应无停机、降容量等不正常情形。运转过程中记录以下参数: 如有并机装置测试要求,则需在单机测试合格后,再进行并机性能测试。(1)模拟大电停电,观察本装置内油机是否能全部自动启动且并联成功,记录柴油发电机组从启动发出到全部油机并联成功的时间;(3)模拟并机测试自动加机减机用途逻辑验证,当负载减少到柴油发电机组退出一台柴油发电机组的要素时(通常80%),验证柴油发机电系统是否能够自动退出一台柴油发电机组,并自动停机;当负载增加到自动加另一个柴发机组时(通常85%),验证柴油发机电装置是否能够自动启动且能够并网到柴油发电机系统中实载运转;(6)模拟大电恢复,观察油机是否经过可调节的延时将所有负荷切回电网电源供电,油机在空载下运转约5分钟是否自动停机,控制装备是否自动复位,为下一次运转做好准备。 柴油发电机装配是一个复杂而综合性的程序,需要遵循一系列规定和要求。任何装配过程中的失误或疏忽都可能引起严重的后果,包括设备损坏、安全隐患和人员伤害。因此,对于柴油发电机的安装流程进行严查和记录非常重要。其中,检查记录不仅可以帮助确保装配工作的质量,还可以为后续的保养和损坏处理提供有价值的信息。通过记录柴油发电机的安装细节和验看结果,可以为日后的维护作业供应参考依据,从而提高设备的可靠性和寿命。综上所述,柴油发电机安装验看和记录,对于确保装配品质和装置稳定运行非常重要,是一个不可或缺的过程和文档。温馨警告:未经我方许可,请勿随意转载信息!如果希望领会更多有关柴发机组技术数据与产品资料,请电话联系销售宣传部门或访问康明斯发电机公司官网:柴油发电机气缸体和缸盖不平度、变形检验方式
摘要:康明斯发电机持久在高速度、大负载要素下作业,润滑不足、烧瓦抱轴等会致使汽缸体变形、开裂以及轴承座孔中心线的变化。康明斯发电机工厂在本文中以东风康明斯6BT5.9系列柴油发电机为例,细说了深圳某用户在实际操作中所产生的问题,并引荐了柴油发电机气缸体和缸盖的裂纹、不平度、变形检验步骤。 应力是造成发电机汽缸盖在使用步骤中产生裂痕和稳定性差的起因之一。在发电机运行程序中,汽缸盖会受到螺栓紧固力、燃气爆发压力以及活塞、连杆等出现的惯性力和离心力的用途,这些大小和方向都不相同的力,会使气缸盖产生轻微的弯曲和扭转,严重时甚至会产生裂痕。图1和图2分别为柴油发电机启动与停机时的应力云图。(1)使用管理不当,柴油发电机太热时,突然加冷水;或在冷态下急剧加热(柴油发电机起动后不暖机又急剧增加负载);供油时间不对,发生早燃或爆燃,造成缸盖温度偏高等,导致缸盖热胀冷缩而发生裂痕;寒冷季节,停机熄火后,马上放掉水箱宝或没有放净,使缸体和缸盖由热骤冷或因剩余防锈水而冻裂。(3)维修时,气缸盖螺栓没有按规定顺序、规定功率拧紧,或各螺栓拧紧程度不一致,造成缸盖、缸体受力不匀而产生裂痕。 内部存在过大的应力,长期在发烫高压状态下工作,内应力慢慢向外释放,造成缸盖变形。 柴油发电机长期超负载运行;柴油发电机高温状态骤加防锈水;长期使用硬水,水道内产生过多的水垢,造成散热差,尤其是铝合金缸盖,膨胀系数大,热变形大,更容易造成翘曲。 装配时缸盖螺母没按规定功率、次序拧紧,或主观的增加功率,以为密封效果好,其实这样不但增大了缸盖的变形,破坏了密封,而且缩短了螺栓的使用年限;缸盖各螺检扭紧力不一致时,往往会造成局部凸起变形;气缸套过盈量过大或台肩凸出不一致,缸盖压紧后变形。在热车状态下拆除汽缸盖也是引起缸盖变形的重要因由。严查是重点是严查平整度,以及积碳程度和配气机构的磨耗度及间隙。 首先要检测气缸体缸壁的裂纹和缸盖不平度,然后可先用堵漏剂试验,如无法解除则需更替缸体或加装薄壁干式缸套。其次,要处理排气管不通的问题——疏通或换管,才能彻底解决故障。(2)汽缸盖变形∶下平面表面较大变形为0.05mm,进气歧管(或排气歧管)侧平面为0.10mm,排烟歧管侧平面为0.10mm。(2)用铲刀铲除汽缸体上平面(或汽缸盖下平面)和气缸盖下平面上气缸垫残余黏连物、气缸盖两侧的进气和排气接口平面上的残余黏连物。(4)放入清洗盆中,用煤油清洗气新缸体上平面、气缸盖下平面和汽缸盖两侧的进气和排气接口平面。(1)用一只手轻轻将刀刃直尺的锐角靠在气缸体上平面(或汽缸盖下平面),如图4(a)/(b)所示,另一只手用塞尺内0.05mm的检测片向刀刃直尺和汽缸体上平面(或气缸盖下平面)的缝隙中试插。(2)如果用0.05mm的测定片不能或很难插入刀刃直尺和汽缸体上平面(或气缸盖下平面)之间的缝隙中,则说明此测量点的变形量没有达到较大值,然后更换位置检验刀刃直尺和汽缸体上平面(或汽缸盖下平面)之间的其他缝隙。(3)如果测得图4(a)/(b)所示的位置上刀刃直尺和汽缸体上平面(或气缸盖下平面)之间的所有缝隙都没有达到较大限值,则再将刀刃直尺按照图中粗实线所示的其他几个方位,用上面两个步骤的方法重复进行检验。(4)在测量流程中,如果用0.05mm的测定片插入刀刃直尺和汽缸体上平面(或气缸盖下平面)之间的缝隙时有一些阻力或阻力很小,则说明此气缸体上平面(或气缸盖下平面)的变形量达到或超过了较大限值。(1)用一只手轻轻将刀刃直尺的锐角靠在气缸盖进气歧管(或排气歧管)侧平面,如图4(c)/(d)所示,另一只手用塞尺内0.10m m的检测片向刀刃直尺和汽缸盖进气歧管(或排烟歧管)侧平面的缝隙中试插。(2)如果用0.10 mm的测定片无法或很难插入刀刃直尺和气缸T盖进气歧管(或排烟歧管)侧平面之间的缝隙中,则说明此测定点的变形量没有达到较大限值,然后更换位置检验刀刃直尺和气缸盖进气歧管(或排烟歧管)侧平面之间的其他缝隙。(3)如果测得图4(c)/(d)所示的位置上刀刃直尺和汽缸盖进气歧管(或排烟歧管)侧平面之间的所有缝隙都没有达到较大限值,则再将刀刃直尺按照图中粗实线所示的其他几个方位,用上面两个流程的步骤重复进行检查。(4)在测量步骤中,如果用0.10mm的测定片插入刀刃直尺和汽缸盖进气歧管(或排气歧管)侧平面之间的缝隙时有一些阻力或阻力很小,则说明此汽缸盖进气歧管(或排气歧管)侧平面的变形量达到或超过了较大限值。(3)用压缩空气吹净汽缸体的上平面和气缸盖的下平面上的煤油时要戴好护目镜,气枪无法朝向人吹。 根据柴油发电机的作业环境和使用说明,选定适合的材料。对于发热高压环境,可以选购具有良好耐热性和耐腐蚀性的材料。 在制造程序中,确保加工精度和安装精度,以增强机体和缸盖的质量。同时,采用领先的铸造技术和热解决工艺,降低材料内部的短处。 定期检查冷却装置,确保其正常作业,避免柴油发电机偏热。同时,避免长时间高负载运转,以减轻温度变化对缸体和缸盖的影响。气门区域温度曲线、 减小柴油发电机的机械负荷,防范频繁的突加突减负荷。此外,选用适合柴油发电机组性能的润滑油,并按期更替。劣质机油会加剧柴油发电机损伤,进一步加剧缸体和缸盖的变形。 在生产步骤中加强质量检验,及时发现和消除变形问题。对于已经变形的机体和缸盖,进行替换或修复,以确保柴油发电机的正常运转。 汽缸盖构成复杂,壁厚不均匀,在发热高压下各部位热负载极不均匀,所有这些都会导致热应力的产生,同时,还承受很大的机械应力的功用。汽缸盖的工作要素相当恶劣,常产生汽缸盖裂痕和底平面翘曲变形等事故。本文在上述内容中对这两种损坏进行了浅述,陈说了检验与检修程序,以提升柴油发电机汽缸盖的修理品质。柴油发电机消声器的种类及作业机理
摘要:柴油发电机排出的废气在排烟管中流动时,由于排气门的开闭与活塞往复运动的危害,气流呈脉动形式,并具有较大的能量。如果让废气直接排入大气中,会发生强烈的排烟噪声。消声器的功能是减少排气噪音和解决废气中的火星。消声器一般是用薄钢板冲压焊接而成。它的作业原理是减小排烟的压力波动和消耗废气流的能量。当该柴油发电机作业时,噪音传入消音筒内,进入第一消音室、第二消音室和第三消音室内,第一消音管、第二消音管和第三消音管会进行消音处理,隔音层也会进一步实现消声处理,耐磨材料层增强了装置的耐磨性,耐发烫材料层可承受发电机组运行中排气管产生的极高的温度,同时提高了该柴油发电机的耐腐蚀性。消声器的噪音级别:排汽管的响声强度以声贝为单位。声贝是一个测定单位,用于表明一个物理属性与另一个对数限度的占比。声贝值是一种噪声测定法。生产服务商实际有不同的降音效果。该当强调的是,并非每一个消声器和型号都能在任何等级工作中。生产商生产制造各种各样类型型号,其产品成本和消声器的机械性能决策了级别的易用性。消声器是阻止声音传播而允许气流通过的一种器件,是排查柴油发电机排放动力性噪声的重要举措。衡量排汽消声器的好坏,主要考虑以下三个方面:现有的消声器,大多采用阻抗复合型消声原理。由于构成复杂、重量大、高温氧化吸声填料,高速气流冲击吸声填料,水气渗透吸声填料等原因,消声器很容易出现修理频繁、消声效果差,操作周期短等情形。而这历来是消音器的布置难点,微穿孔消声器则综合了较合理的消声机理所规划解除了上述问题,取得了良好效果。微穿孔消声器消声器不操作任何阻性吸声填料,采用微穿小孔多空腔组成,高压气流在消声器内经多次控流进入空腔体,逐级改变原气流的声频。阻力损失小,消声频带宽,作业时不起尘。不怕油雾、水气。耐过热、耐高速气流冲击。使环境噪音符合国家《工业企业噪声标准》。具体是利用多孔吸声材料来减少噪声的。把吸声材料固定在气流通道的内壁上或按照一定步骤在管道中排列,就组成了阻性消声器。当声波进入阻性消声器时,一部分声能在多孔材料的孔隙中摩擦而转化成热能耗散掉,使通过消声器的声波减弱。阻性消声器就好象电学上的纯电阻电路,吸声材料类似于电阻。因此,人们就把这种消声器称为阻性消声器。阻性消声器对中高频消声效果好、对低频消声效果较差。 普通排烟机构用的消声器结构多数为抗性消声器,抗性消声器是通过管道截面的突变处或旁接共振腔等在声传播过程中致使阻抗的改变而发生声能的反射、干涉, 从而减轻由消声器向外辐射的声能,以达到消声目的的消声器。抗性消声器较实用控制发电机的窄带噪声和中低频噪音,但对发电机的中高频噪声控制效果较差。 抗性消声器是由突变界面的管和室组合而成的,好像是一个声学滤波器,与电学滤波器相似,每一个带管的小室是滤波器的一个网孔,管中的空气质量相当于电学上的电感和电阻,称为声品质和声阻。小室中的空气体积相当于电学上的电容,称为声顺。与电学滤波器类似,每一个带管的小室都有自己的固有频率。当包含有各种频率成分的声波进入第一个短管时,只有在第一个网孔固有频率附近的某些频率的声波才能通过网孔到达第二个短管口,而另外一些频率的声波则不可能通过网孔.只能在小室中来回反射,因此,康明斯发电机公司称这种对声波有滤波功能的构成为声学滤波器。选取适当的管和室进行组合.就可以滤掉某些频率成分的噪声,从而达到消声的目的。抗性消声器适合于排除中、低频噪声。 康明斯基础型柴油发电机的消声器,它是多腔膨胀共振型(在膨胀筒圆周充填有吸声的超细玻璃纤维),在标定工况下可使噪音下降约为30dB(A)。康明斯新一代消声器是一种阻抗复合型消声器,包括排烟管、消音筒、进气管、第一消音室、第二消音室和耐磨材料层。该消声器的内部设置有三个消音室, 每个消音室都装配精巧,大大提高了消音效果,且内部还设置有一层隔音层,进一步提升了该消声器的消音效果,消音器采用的是铝合金材料制成,一定程度提高消声器寿命,且在消音器的外表面设置有耐磨材料层,增强了该装置的耐磨性,保证了装备的外观。内部组成由玻纤或绝缘层夹层玻璃组成。排烟管根据隔热板后,噪声会减小。这类方法用以减小高频率声波频率。柴油发电机组组合型消音器-将反应方程消音器与吸收式热泵消音器紧密结合,在反应方程消音器的设计中组装消化吸收原材料,进而减小全部作业频率布置举措。反应方程消音器-内部组成由三个由管路衔接的箱体构成。为了更好地减少中低频率噪声,排气管室中间的排烟管噪声反跳。康明斯发电机组圆柱型消声器是较早开发布置的样子。他们可以搭建为全部三个基础上规划方案,而且可以用以内部结构和外界。消声器可按照各类使用规定水准或竖直组装,这也是较经济实惠的消声器之一。这类康明斯发电机组消音器可以有很多样子,例如长方型、椭圆型、环形这些。选购样子在于可以用室内空间,发电机组多发于声损耗机壳。柴油发电机异响损坏的诊断原则和程序
摘要:现代科学技术的发展,尤其是新型传感技术的不断出现,信号浅谈途径不断增多与完善,特别是计算机技术的飞速发展为诊断技术的发展供应了良好的契机。过去难以处理的信号阐释或状态辨识问题,因为高速、大容量计算机的产生而变得容易起来。现在一些新的理论,如模式辨认、人工智能、神经网络、小波细述以及模糊理论等与现代电子技术相结合为柴油发电机异响故障解除与诠释开辟了新的策略。柴油发电机异响诊断可以依靠发电机组修理人员丰富的技术经验进行诊断排除。而听诊则是修理人员常载的非常有效的途径之一。其中,可以利用柴油发电机速度变化发生的异响进行浅析。柴油发电机的异响在急加载或者在急减速的时候会表现得非常明显,急加载异响明显的如曲轴主轴承响和连杆轴承异响等,急减速的异响明显的如活塞销衬套松旷和曲轴折断等致使的异响。其他的还有低转速运转、速度升高时都会产生较明显的异响。利用异响音调的高低、强弱来判断异响也是柴油发电机异响诊断较为主用的一个程序。柴油发电机作业中因为机件、工况的不一样,其异响发生时候的声源会产生振动的区别,引起其发出的异响在音调、音强、音高方面和发生的部位出现不同。因而可以利用其特点在一定的因素下将柴油发电机的异响诊断出来。当然,这种步骤需要较深厚的经验积累,同时辅助其他程序诊断。利用便携式一项诊断仪可以快速诊断出柴油发电机异响发生的位置。其方法一般为:在柴油发电机走热程序开始后,把压电加载度计放在柴油发电机缸盖上部汽缸中心线位置,在怠速下用直放电路检测油污金属敲击异样的声响;左右移动加载度计,观察显示仪表指示值有无明显移动的迹象;在仪表发生异常的位置上,依次按下开关,观察在何种异响的优势频率下,仪表指示值显著移动;在异响较为明显的转速、温度测试要素下及较有利的验查位置,仪表读数超过正常通统计参数的位置即为异响震源。柴油发电机异响往往由多种原由致使,每一种原由导致异响损坏的可能性又各不相同,伴随异响故障的先兆也不相同,这表明柴油发电机异响事故的前兆与损坏起因之间呈现某种模糊关系。因此可将异响征兆、原因等按主次关系列成故障判断的模糊关系表,以此建立模糊关系矩阵。若将待诊断柴油发电机的事故征兆描述为一个待检模式向量,即权重集,然后将其与模糊关系矩阵进行矩阵运算,即可得出事故起因的先后次序,从而诊断出异响损坏。柴油发电机异响的确诊应讲究科学、可靠、快速、准确的原则。柴油发电机发生异响损坏的因由有很多,比如柴油发电机的附件(发电机、水泵、空调压缩机、方向机助力泵等)因为技术情况等的缘由发生异响;柴油发电机的进排烟管路泄露发生异响以及柴油发电机内部的一些具体零配件如主轴、凸轮轴、活塞、连杆等因为各种起因而产生异响。针对柴油发电机异响事故的发生,现实中的修理厂师傅一般只采用听诊法结合自己的经验进行故障的诊断与叙说。这种做法有几大的缺点。1、没有经过装置的测定与细说光靠实际的经验而没有结合新的理论知识很难对现代新出厂的发电机组产生的异响做出正确的判断。2、耽误时间,因为缺少装置的诊断与阐述很难做出准确的判定从而引起在确诊程序中盲目的去动手却无法得到相应的结果。3、浪费财力、物力。盲目的动手进行诊断使得诊断流程中一些一次性元件需要更替且要花更多的时间、物力去恢复。柴油发电机异响损坏的确诊应当科学、可靠、快速、准确。这就要求维修人员要有丰富的实际经验,与时俱进的先进理论见解,能够熟练的掌握仪器的使用和基本的计算机基础。从而使柴油发电机异响故障排除确诊过程更快,更正确。1、根据异响产生时柴油发电机的转速来看,柴油发电机异响一般都分存在于怠速或低速运行期间和高速运行期间两种情形。当异响发生在怠速或低速运转期间时,可依以下顺序进行诊断:(1)用单缸断火法验查异响与该缸是否有关。如果对某缸进行断火后,柴油发电机异响有明显降低或消失,说明故障在该缸。(2)若对某缸断火后柴油发电机异响没有明显的变化,说明异响与该缸没有关系。应继续逐缸进行查看,确定异响存在的气缸。(3)确定异响存在的汽缸后,再逐渐提高柴油发电机转速,听察异响有无变化及变化的程度,根据异响的变化程度,预判运动机件磨耗的程度,一般磨损程度越大,异响变化程度也越大。2、在诊断步骤中,还应考虑柴油发电机温度高低的不一样,对异响的情形进行比较。当柴油发电机异响产生在高速运转期间时,可依以下顺序进行诊断:(4)如果在从低速逐渐提高速度的过程中,不出现异响,应进行急加载或急减速听察异响时出现,当异响产生时用单缸断火法进行查找,再利用速度的急剧变化,即可判明异响产生的缸位。利用上述方法进行诊断,一般能够查明柴油发电机的异响与负荷、工作循环、转速和温度之间的关系,从而预判出损坏部位,根据异响的特征,即可作出诊断出损坏状况。另外,在诊断程序中还需要观察异响引起的震动部位及可能伴同出现的其他损坏状况,如机油压力大小、机油加注口排烟情况、排气烟色等,是否与故障状况吻合,从而得出较为准确的结论。柴油发电机对中检查、测定、组装及危害因素
摘要:不正确的对中将会造成过量的震动,从而缩短柴油发电机和发电机的轴承以及联接件的使用年限,而且经常需要重新对中。柴油发电机组良好的对中作业包括合适的调整垫片,正确的固定螺栓拧紧力矩,高精确的千分表,以及为轴承间隙、热膨胀和柴油发电机的其他特性留有余量。此外,在做任何测定或校正之前,所有的被测表面及配合表面必须完全干净,无润滑脂、油漆、氧化物或锈蚀和脏物,因为所有这些物质均可能造成测定不精确。 当发电机和柴油发电机的中心线是平行的但不一样心(见图1),会发生平行不对中,也称为孔不对中。 孔不对中可使用(见图2)所示的千分表进行检查。当固定千分表的轮子转动时沿飞轮外径上的几个点观察千分表的读数。根据经验作法,发电机的轴要比柴油发电机轴略高,这是因为:注:两部分较好一同旋转。这样可以解除千分表上因部件失圆造成的误差。采用非康明斯连轴器时,由于橡胶联轴器会造成错误的读数,因此在对中心时发电机要从柴油发电机上断开。 当发电机的中心线和柴油发电机的中心线),会出现角不对中,也称为面不对中。(1)角对中可以容易地用塞尺在两个部件联结处测到(见图4)。正确的对中应当是在联结轴周围四点检测到的值该当相同。(2)联轴器安装后,千分表从一个面到另一个面可指出所有角偏差。在任一种种状况下,读数都会受随测量点到旋转中心距离的影响。(3)在确定了柴油发电机和发电机之间的对中后,应检修曲轴的轴向窜动。确认联轴节的螺栓拧紧之后没有造成对止推轴瓦的轴向推力。 下面图5、图6、图7、图8显示出了四种不对中情况,并且可能发生在不止一个平面。基于此,检修对中时必须每90°一个间隔进行测量读数。 加工精确低的法兰会造成明显的不对中性,也不可能实现准确的对中。(1)端面跳动是指轮缘端面偏离轴中心线垂直线)径向跳动是指驱动轮的中心平行偏离轴中心线的距离。 当不对中出现时,必须检验飞轮、离合器或联轴节、被驱动件和轮毂的端面和径向跳动。端面和径向跳动必须要调校。飞轮上导向孔的径向跳动无法超过0.002英寸(0.05毫米),安装到飞轮上联结件的径向跳动不超过0.005英寸(0.13毫米)。法兰的端面跳动不超过0.002英寸(0.05毫米)。调节垫片 所有设备下的垫片的厚度较薄为0.76毫米(0.03英寸),较厚为3.2毫米(0.125英寸),防止在以后的调整中需要减少垫片时没有合适的垫片可用。垫片过厚在操作中可能会被压缩。垫片组应由防锈材料制成,并应小心装卸。柴油发电机 对中后,每个安装面必须承担其各自的负载。下图示出用以验证发电机或柴油发电机正确加垫的过程。当安装的垫片数合适后,在进行调整对准时应均等地加或减垫片。拧紧装备安装螺栓的步骤如下:(3)如果千分表指针读数在0.05毫米以内,重新拧紧螺栓,然后进行程序(4)。如果指针读数超过0.05毫米,在螺栓的支脚下加调节垫。松开所有螺栓,重复流程(1)到(3)。(4)如果指针读数在0.05mm以内,重新拧紧螺栓。如果指针读数超过0.05毫米,在螺栓的支脚下加调整垫。松开所有螺栓,重复流程(1)到(4)。 当螺栓被“拉长”至计算长度时,其拧紧功率是合适的。适当“拉长”能将驱动装备可靠地紧固到机座上。在这种状况下产生的夹紧力虽受到振动而致使活动也仍可保持不变,如果拧紧螺栓的力矩不足,振动时就不能保持夹紧力,而会逐渐松动并产生偏移,见图10。装配螺栓的位置 每一个柴油发电机或发电机的固定螺栓都有必须穿过实心的材料 。如果固定螺栓穿插过空心位置,就会引起变形。如图11所示。对中程序 在所在主要装置都装在机座上之后,就要进行最后的对中工作。柴油发电机应充满油和水,并处于准备工作状态。(1)柴油发电机和所有机械驱动的设备间的不对中性一定要达到较小。许多主轴和轴承的事故就是因为驱动装置的不准确对中造成的。在作业温度和带负荷下,不对中总是要造成震动和/或应力负载。(2)由于在柴油发电机的作业温度和带负荷下作业的柴油发电机没有精确可行的程序测量其对中性,所有康明斯的对中过程必须在柴油发电机停止和柴油发电机及所有发电机在环境温度下进行。(3)在没有读取千分表的读数时,将发电机尽量放到它的较终位置上。在发电机的每个安装表面下面应装有较薄0.76毫米和较厚3.2毫米的垫片。联轴节的装配 联轴节装配如图12所示。在进行对中检验时,其他联轴节的挠性元件必须拆卸。元件的“刚性”会妨碍精确的对中读数。最后的对中工作 用千分表支架装两个千分表以便同时检测孔和面的偏移。记录对中性读数的正确位置。(1)在读取端面读数之前,应确保用途在主轴端部的推力总是具有相同的方向。在顶部将两个千分表对零,并每隔90o(1.5弧度)读取一次读数。转动柴油发电机来转动整个设备。千分表 千分表可以检测到非常小的距离变化。进行轴的对中时,需要测定由于偏移而产生的微小距离的变化。千分表的装配必须牢靠,这样才能准确测出对中值。千分表支架(1)当固定在一个轴上并转动时,千分表支架必须有足够的刚性,才能牢靠地支承千分表。支架可以使千分表处于检测点位置,适当的支架是可以调整的,以便可以在不同中的传动系上进行检测。(2)千分表支架不能因为千分表的重量而弯曲。普通商用千分表支架在千分表转动时,可能会由于支承不牢而出现读数误差。不建议操作千分表磁性底座支架。(3)为了检测支架的刚性,可以将相同一组的支架和千分表旋转一个圈,同时读取支架端的联轴器读数。允许的较大读数小于0.025毫米(.0001英寸)。也可能需要在支架端的联轴器上,用螺栓临时联接一个刚性很好的基准臂,当读取对中读数时,用相同一组的支架和千分表来检测读数。 康明斯建议在进行对中性检测时,应使用如图13所示的支架和千分表。用两个12.7毫米(0.5英寸)直径的螺杆或螺栓来组装连接器。不同尺寸的轴可能需要制造不同的支架。千分表读数的正确性(1)有一个快速程序来检测千分表在检验面对中性时的读数的有效性。如下图,从给定的A、B、C、D四个不同点读数。在读数时,千分表必须返回A点,以确信读数回到0。(2)请记住这个快速检修法需读数B+D应等于C。(当检验对中性时,将驱动和被驱动轴一起旋转,这种方式得到的测定值是高效的)。千分表读数的说明 采用前主轴驱动时,千分表读数可能会显示出被驱动轴低于柴油发电机。这是因为千分表是装在被驱动轴上,而不是装在柴油发电机上,由于联轴结的结构,要反转千分表基准点,见图14。轴承间隙 发电机转子轴和柴油发电机主轴分别绕各自的轴承中心线转动,因此,它们的中心线该当是重合的。对中工作是在静止状态下进行的,这时主轴支承在其轴承的底部。工作时,曲轴并不是处在这个位置上。爆发压力、离心力以及柴油发电机油压力都力图将主轴提起使飞轮绕着它的线。 柴油发电机在静止时,飞轮和联轴器的净重会使主轴弯曲。这个影响必须在对中时得到补偿,因为在对中步骤中,它会导致导向孔或飞轮旋转外径比曲轴轴承的实际中心线低。因此康明斯建议应在装好联轴节时进行对中检验。如图16所示。3、 柴油发电机在相对轴旋转方向的反向扭转趋势和发电机在轴的旋转方向的旋转趋势就是反功率。它将自然地随着负载而增加,以及导致震动。这种震动在怠速时感觉不到,但在带负荷时可感觉到。这一般是因为在反功率功用下,底座强度不足而发生过度的底座挠度,从而改变中心线对中而造成的。这存在边对边的中心线偏差危害。在柴油发电机怠速(无负载)或停机时,偏差就会消失。4、 当柴油发电机和发电机达到作业温度时,热扩张或热膨胀也就随着出现。它同时向垂直和水平两个方向膨胀。垂直方向的膨胀在部件装配脚和它们各自的旋转中心线之间产生。这种膨胀的大小决定于所用的材料、发生的温升以及从旋转中心至安装脚的垂直距离。(1)垂直补偿包括将对中设备调至非零值。(2)曲轴水平方向的热膨胀从柴油发电机的止推轴承向另一端增长。当被设备连接到柴油发电机的这一端时,就要考虑这种热膨胀。如果发电机用螺栓固定到柴油发电机机体时,这种膨胀功能是轻微的,由于缸体和主轴差不多以相等的膨胀率膨胀。(3)水平补偿可采用一个允许驱动与被驱动装备之间作充分相对运动的联轴节。装配装置时,应考虑使水平方向热膨胀进入联轴节的作业区,而不远离联轴节作业区。否则,会引起曲轴止推轴承负载过量,和或使联轴节故障。如果考虑柴油发电机在热态对中检验时,使主轴仍具有端面间隙,则在冷态时就应该留足够的间隙。 随着社会经济的多元化发展,柴发机组与各个行业领域都休戚相关,柴发机组由柴油发电机、发电机、高弹性联轴器、公共底座等部件结构,柴油发电机发电机安装在公共底座上,高弹性联轴器用于柴油发电机主轴与发电机轴的连接,两者轴线与公共底座连接面平行,使得轴系处于水平自由状态,保证其安全稳定运行使用。为确保柴油发电机组的稳定运行,发电机组在装配时,柴油发电机曲轴与电机轴结构柴发机组的轴系,要求两者完全对中,若两者存在偏移或夹角,则发电机组运转时,对轴系将发生极大的损伤,同时对高弹性联轴器也出现损害,大大减轻其使用年限,严重危害发电机组运行的可靠性。官方提醒:未经我方许可,请勿随意转载信息!如果希望领悟更多有关柴发机组技术数据与产品资料,请电话联系出售宣传部门或访问康明斯发电机公司官网:广东康明斯公司阐述柴油发电机组的电缆线匹配
许多用户可能不知道,柴油发电机组电缆的面积是由电流的大小确定的,本篇广东康明斯公司将为您简述柴发机组的电缆线匹配。说明:本口诀对各种绝缘线的载流量不是直接指出,而是以“截面乘以一定的倍数”来表示,通过心算而得。可以看出:倍数随截面的增大而减少。1、“二点五下乘以九,往上减一顺号走”说的是2.5mm2及以下的各种截面铝芯绝缘线,其载流量约为截面数的9倍。4mm2及以上导线的载流量和截面数的倍数关系是顺着线。、“三十五乘三点五,双双成组减点五”说的是35mm2的导线及以上的导线,其载流量与截面数之间的倍数关系变为两个两个线导线导线倍,以此类推。3、“要素有变加折算,发热九折铜升级”。上述口诀是铝芯绝缘线的地区,导线载流量可按上述口诀计算对策算出,然后再打九折即可;当使用的不是铝线而是铜芯绝缘线,它的载流量要比同型号铝线略大一些。可按上述口诀步骤算出比铝线铜线铝线计算东风康明斯柴油发电机组。4、根据管内穿线根数的多少,按其载流量的打相应的折数。也就是说,管内穿的线根数越多,其载流量越小。以上是广东康明斯公司将为您阐释柴发机组的电缆线匹配,如有不明白的地方,欢迎来电咨询,广东康明斯公司是国内生产发电机发电机型号规格及功率、柴发机组较早的销售中心之一,一直致力于用优秀人才,建优秀企业,造优质产品,创优秀服务柴油发电机官网,倾力打造国内优秀企业。首页|公司简介|产品展示|新闻中心|技术支持|客户案例|用户一览表|企业资质|网站地图|联系深圳发电机出租公司如何做好进口柴油发电机的维护与维修?有哪几点误区?
康明斯发电机公司常说的进口柴油发电机保养是指事故维保和平常保养两个方面:维保是指进口柴油发电机发生故障后,更替各种配件或修理进口柴油发电机,解决机组内积碳等。维护具体是定期更替机油过滤器、燃油滤清器康明斯发电机官方网站、空气过滤器三个滤清器,以确保机组的各种性能指标良好。在这个维保过程中,康明斯公司发现很多操作人员都有这两个误区。保养是*期更换进口柴油发电机的机油过滤器、燃油过滤器、空气滤清器、空载试验机等,从更替三个滤清器的角度来看,用户基础上是定期一年一次,机组运转时间是替换三个滤清器的依据,从现在的维保步骤来看,机组每年运转时间在5小时以下(不停电),远远小于需要更替三个滤清器的时间,因此每年替换三个过滤器是没有科学依据的3)根据进口柴油发电机运行时间替换机油过滤器、燃油过滤器、空气滤清器三个滤清器,而不是按期;5)机组更换零件、大修或更替三个过滤器后,必须判定满载试验机6.严查机组的四个泄漏现状、表面、启动电池、机油和燃料等。修复是详细针对进口柴油发电机故障后的维修柴油发电机组厂家,修理后也没有有效的方法对进口柴油发电机进行实际负载的再测试,不能对进口柴油发电机修理前后进行对比,修理后进口柴油发电机是否能正常操作,心里没底,对于下一次停电后机组的操作不能完全没有后顾之忧。但如今平日维不能模拟机组断电后的运行状态,事故也只能在进口柴油发电机真正停电后的运转步骤中出现,这样修理本身也给企业带来了不可防止的损失。进口柴油发电机的保养详细是提高发电机组的使用时限和作业效率。一旦维护步骤出现问题柴油发电机型号及规格,再花费的资金高于预期。因此,为了减小企业的维护成本,使用人员必须预防这些问题,做好准确的进口柴油发电机维护工作。怎么样布置柴发机组机房装备?
柴发机组机房设备的布置应根据柴油发电机组容量大小和台数而定,应力求紧凑、经济合理、保证安全及便于保养。本篇由专业柴油发电机公司——广东康明斯发电设备服务商为大家一一引荐下。当柴油发电机房只设一台机组时,如果机组功率在500kW及以下,则一般不设控制室东风康明斯柴油发电机,这时配电屏、控制屏宜规划在发电机端或发电机侧,其使用检修通道的要求为屏前距发电机端不应小于2m,屏前距发电机侧不应小于1.5m。对于单机容量在500kW及以上的多台机组,考虑到运行保养、管理和集中控制的方便,宜设控制室。一般将发电机控制面板、机组操作台、动力控制(屏)台及照明配电箱等放在控制室。控制室的设计与低压配电室的规划的技术参数相同康明斯发电机厂家。在机房内,柴发机组宜横向规划(垂直布置),这样,机组的中心线与机房的中轴线垂直,使用管理方便,管线短,规划紧凑。当机房与控制及配电室毗邻布置时,发电机出线端宜规划在靠近控制及配电室一侧康明斯发电机组。以上是由专业柴油发电机授权厂商——广东康明斯发电设备销售中心为大家分享的柴发机组机房设备的规划对策,希望可以帮到各位。康明斯发电机公司是专业柴发机组的生产工厂,也是康明斯、康明斯(VOLVL)、玉柴等授权中国柴发机组OEM配套服务中心。康明斯发电机公司创始于1974年,在全国设有64个出售服务部,长久为用户提供技术咨询,免费调试,免费检测,免费培训服务。更多详情欢迎登录康明斯官网:柴油发电机喷油提前角调整的原因和原理
柴油发电机具有容量范围大、经济性好、可靠性高等特点,因而在发电机组、工程机械、发电机组、发电机组等各种机械装备中有着广泛应用。对于柴油发电机而言,供油提前角(指柴油泵开始压缩燃油时活塞所处的位置,并用主轴的转角表示)的大小直接影响柴油发电机的性能,如果供油过早,将提前形成可燃混合气并点火,造成柴油发电机工作粗暴或敲缸;如果供油过迟,混合气在活塞从上止点下行时才开始燃烧,会造成柴油发电机供电不足并危害排放指标。因此,柴油发电机的供油提前角设定十分重要。喷油提前角的概念是指喷油嘴开始喷油至活塞到达上止点之间的主轴转角。而较佳喷油嘴提前角是指在转速和供油量一定的条件下,能获得较大容量及较小燃油消耗率的喷油提前角。目前,通常的供油提前角调节主要是冒油法进行,在转动飞轮盘的同时,由人工观察柴油泵高压油管出口位置,当有冒油状况时,认为此点为供油起始点,并以此作为供油提前角的设定依据。但这种做法不但不方便,而且人为误差较大。因此,精确检修燃油泵的泵油起始点,消除人为观察的误差,成为准确调节供油提前角的关键问题。大部分柴油在上止点以后,活塞处于下行状态时燃烧的,使较高工作压力减少,热效率显著下降,发电机动力不佳,排气冒白烟。供油提前角过大时,燃油是在汽缸内空气温度偏低的情况下喷入,混合气形成要素差,燃烧前集油过多,回引起柴油发电机作业粗暴,频率不正常和无法启动;过小时,将使燃料产生过后燃烧,燃烧的较发热度和压力下降,燃烧不完全和供电不足,甚至排烟排黑烟,柴油发电机发烫,致使动力性和经济性减少。柴油发电机根据其常载的某个供油量和转速范围来确定一个供油提前初始角,其角的获得,可通过联轴器或转动柴油泵的壳体来进行微量的变化。因柴油发电机转速变化范围较大,还必须使供油提前角在初始角的基本上随转速而变化。因此发电用柴油发电机多装有供油提前角自动调节器。喷油提前角是指柴油开始喷入汽缸的时刻相对于主轴上止点的主轴转角,而供油提前角则是燃油泵开始向汽缸供油时的主轴转角。显然,供油提前角稍大于喷油提前角。由于供油提前角便于查验调节,所以在生产单位和使用部门采用较多。喷油提前角需要复杂而精密的仪器方能测量,因此只在科研中运用。也就是说,柴油发电机的喷油提前角(供油时间)是通过调节柴油泵的供油提前角来实现的。整体式燃油泵柴油发电机的总供油时间一般以喷油泵第一缸供油提前角为准,调节整个燃油泵供油提前角的办法是改变喷油泵凸轮轴与柴油发电机主轴间的相对角位置。为此,燃油泵凸轮轴一端的联轴器通常是做成可调节的一种联轴器的构造。联轴器具体有两个凸缘盘组成:装在驱动齿轮轴上的凸缘盘和装在柴油泵凸轮轴一端的从动凸缘盘,两凸缘盘间用螺钉连接。驱动凸缘盘安装螺钉的孔是弧形的长孔。松开固定螺钉可变更两凸缘盘间的相对角位置,从而也就变更了整个柴油泵的供油提前角。将喷油泵从柴油发电机上拆下后再重新装回时,可先将燃油泵固定在柴油发电机缸体上的柴油泵托架上,再慢慢转动主轴,使柴油发电机第一缸的活塞位于压缩行程上止点前相当于规定的供油提前角的位置,然后使喷油泵凸轮轴上与柴油泵壳体上相应记号对准。再拧紧联轴器的固定螺钉。多数柴油发电机是在标定速度和全负载下通过试验确定在该工况下的较佳喷油提前角的,将燃油泵装配到柴油发电机上时,即按此喷油提前角调定,而在柴油发电机工作流程中通常不再变动。显然,当柴油发电机在其他工况下运行时,这个喷油提前角就不是较有利的。对于转速范围变化比较大的柴油发电机,为了增强其经济性和动力性,希望柴油发电机的喷油提前角能随转速的变化自动进行调节,使其保持较有利的数值。因此,在这种柴油发电机(特别是直接喷射式柴油发电机)的喷油泵上,往往装有离心式供油提前角自动调节器。调整作业开始前,先将柴油发电机喷油泵的进油管与本装备的进油接头连接,将柴油发电机柴油泵的回油管与本装置的回油接头连接,然后将柴油发电机燃油泵的高压油管与本装备的感应器转接头连接。然后按照供油提前角调整所规定的工序盘车,排空油管中的气泡后开始供油提前角调节工作。缓慢盘车至柴油泵的喷油起始位置时,液面波动传感器会立即感应到高压油管内的液面变化,并将信号送入检验控制盒,机构控制供油小型发电机组停止向喷油泵供油。此时,柴油泵的喷油起始点精确找到,可以按照供油提前角调节工序进行后续操作,本设备的检测工作完成。通过供油小型发电机组提供燃油,可以免于起动柴油发电机供油泵、减小油管转接工作。液面波动传感器的操作,可以精确检查喷油泵的泵油起始点,大大减轻了以往人为观察判定带来的误差。第一缸是否在压缩行程,可按以下步骤预判∶一是观察第六缸进排烟门均打开时,第一缸活塞处于压缩上止点位置;另一办法是拆下燃油泵边盖,观察第一缸柱塞是否开始顶起,顶起为即将喷油。发电机发动后,视状况进行喷油早晚的微量校正。在运转中,如感觉供油时间不合适,可松开联轴节凸缘接盘连接头上的紧固螺栓,移动驱动盘与联轴器的相互位置。顺时针转动提前器(从发电机前端看),供油提前角增加,反之则减小,进行适当调整,最后再拧紧固螺栓。柴油发电机位置控制式喷射装置的特征
摘要:在满足排放规范的条件下,柴油发电机电控燃油喷射系统的运用,大大提升柴油发电机的燃油经济性和动力性。柴油发电机电控燃油喷射机构与柴油机电喷燃油喷射系统有许多共同之处,柴油发电机电喷燃油喷射系统的关键技术及难点为柴油喷射电喷执行器。阐释柴油发电机电喷燃油喷射机构的优点,对分配泵供油技术和位置式电喷分配泵控制技术进行具体小议,对电喷柴油喷射技术有一定指导。 柴油发电机电喷燃油喷射系统与柴油机电喷燃油喷射系统有许多共同之处,都由探头、ECU和执行器3部分构造。柴油发电机电控燃油喷射系统采用的传感器,如转速探头、压力传感器、温度探头以及节气门位置感应器等,与柴油机电喷装置相同。ECU在硬件以及柴油发电机组控制装置的软件方面也有相似之处。(1)机械控制喷射系统的基本控制信息是柴油发电机速度和机械喷油泵位置,而电喷燃油喷射机构则通过许多传感器检验柴油发电机的运行状态和环境因素,由ECM计算出适应柴油发电机运行状况的控制量,由喷油器实施,控制精确、灵敏。在需要扩大控制作用时,只需改变ECM的存储软件,即可实现综合控制。(2)机械控制喷射系统因为设定不当和磨耗等起因,使喷油时刻发生误差;电喷燃油喷射机构则根据主轴位置的基本信号进行再检测,不存在发生失调的可能性。(3)电控燃油喷射装置通过改换输入机构的流程和参数可改变控制特征,一种喷射系统可用于多种柴油发电机,而不需要机械加工,新产品开发周期缩短,成本减少。 柴油发电机的燃油喷射系统,根据喷射量的控制方法不一样分为位置控制式喷射机构和时间控制式喷射装置两种。位置控制式喷射系统是通过齿条或拉杆位置来控制喷射量的,根据调节油门拉杆位置的方案不一样,又分为传统的机械式喷射机构和电喷位置式喷射系统。后者是在机械式喷射机构的基础上,增加电控系统,如电子调速器、自动控制供油时刻的定期器、控制单元及相应的传感器等。位置式喷射系统,不管是机械式还是电控式都是泵-管-喷油嘴型结构,其中柴油泵是核心部分,详细完成按一定的供油规律,定期、定压地向喷油器供给定量燃油的任务。而喷油咀只是起大概的喷油功能,即当供油压力超过喷油咀的启喷压力时,打开喷油嘴针阀进行喷油,否则针阀落座停止喷油。在这种泵-管-喷油泵型位置控制式喷射系统中,柴油泵根据其构成不同可分为直列泵和分配泵。 图1所示为典型的机械式VE型分配泵的构造。这种分配泵只有一个柱塞,与固定在一起的平面凸轮一同旋转。此时,由平面凸轮形线与滚轮之间的相互用途,完成柱塞的往复与旋转运动,同时实现压油和向各缸分配燃油的任务。平面凸轮的凸起数与汽缸数相等。机械式分配泵供油量的控制,是通过操作人或速度控制器调节油量调整滑套的位置来完成的。当油量调节滑套的位置向柱塞压油方向(图中右向)移动时,柱塞的压油行程增长,供油量增多;反之,油量调整滑套向左移动时,柱塞压油行程缩短,供油量减少。 电喷位置式分配泵是在机械式分配泵的基本上,对油量控制装置和供油时刻的控制系统进行了稍微改动,即去掉了原机械式调速装置,增设了转速探头、控制油量调节滑套位置的比例电磁阀、油量调节滑套位置感应器、控制供油时期的定时控制阀、供油定时器位置感应器等(图2)。比例电磁阀1由线圈、铁心和回位弹簧等构成,ECM通过占空比(在控制脉冲一周期内接通时间所占的比值)控制流经线圈电流的大小,由此控制电磁阀磁场的强弱。可动铁心在该磁场力和回位弹簧力的功用下,保持其轴向平衡点位置。当流经线圈的电流变化时,原磁场力和弹簧力的平衡状态被破坏,铁心沿轴向移动到达新的平衡点。当铁心轴向移动时,通过杠杆系统带动油量调整滑套移动,由此达到调整喷射量的目的。而油量调整滑套的位置是靠安装在可动铁心前端的油量调节滑套位置感应器来测定的。ECM实时读取油量调节滑套位置传感器的信息,并与储存在ROM中的目标值相比较进行反馈控制,使实际油量调节滑套位置尽可能接近目标值。目标油量调节滑套位置或喷射量是事先通过台架试验根据不一样速度不一样负载标定而获取的。 直列泵(In-line Pump)实际上就是把多缸柴油发电机各缸的供油单元安装在同一个柴油泵壳体上而结构的合成式柴油泵。根据燃油泵壳体的组成特征,直列泵也分为A型泵、P型泵等几种。图3所示为P型直列泵的结构。P型泵的供油量是操作员通过加载位置,改变P型泵油量控制齿杆位置来控制的(图4)。 电喷直列泵TICS(Timer Injection Control System)是在P型泵的基本上进行改善的。TICS泵保留了P型泵的油量控制齿杆系统,但在柱塞偶件上增加了一个控制滑套,取代了P型泵中的固定柱塞套。通过控制滑套相对柱塞的上下位移,改变柱塞的供油始点,即供油预行程,由此在一定范围内可实现供油时刻的任意控制。柴油泵喷射步骤如图5、图6所示。 上述位置式泵-管-喷油器型喷射系统,喷油咀和燃油泵之间有一定长度的高压油管,故而喷油泵的供油特征和喷油咀的实际喷油特点不一致。电喷化以后虽然在喷射装置参数的控制上,相对机械式改良了许多,使得柴油发电机的性能得到大幅度的改善,但仍未能彻底解决以柴油泵控制为核心的泵-管-喷油泵型喷射机构构成的固有问题。为了便于叙述,根据图6所示的泵-管-喷油咀型燃油喷射机构在喷射程序中柴油泵端燃油压力PH、喷油泵端燃油压力pn及针阀升程h的变化规律,将其喷射过程划分为喷射增长、主喷射和喷油结束三个阶段。 喷射增长阶段是指从柴油泵出油阀升起而开始供油时刻起到喷油咀的针阀开始升起而开始喷油的时刻为止(图7中I段)。由于一定长度的高压油管的存在,从喷油泵供油开始,被压送的燃油在柴油泵端建立油压的同时,沿高压油管以约1400m/s的转速(压力波)向喷油咀端传播,建立喷油器端的油压。当喷油嘴端的油压升高到其启喷压力时,喷油嘴的针阀才开启,喷油开始。因此,这种泵-管-喷油嘴型位置式喷射系统的第一个缺点就是供油时刻与喷油时刻不一致,喷油时刻相对供油时刻存在延迟角,即供油提前角与喷油提前角的差值。高压油管越长或转速越高,这种喷油延迟角越大。 主喷射阶段是指从喷油咀针阀开启喷油开始时刻起到因燃油泵回油造成喷油咀端的燃油压力开始急剧下降的时刻为止(图7中II段)。在这一阶段,喷油规律具体取决于喷油咀喷孔的总开启面积和喷射压力。而喷油器端的喷射压力与柴油泵的供油速率和高压油管中的压力波动等有关。于是,虽然供油规律影响喷油规律,但两者不相同。这里,喷油规律是指单位时间(或每1°柴油泵凸轮转角)内喷油嘴喷入燃烧室内的喷射量(即喷油速率)随时间(或燃油泵凸轮转角)的变化关系;而供油规律是指单位时间(或每1°燃油泵凸轮转角)内喷油泵的供油量(即供油速率)随时间(或柴油泵凸轮转角)的变化关系,供油规律详细取决于柴油泵的柱塞几何尺寸和柴油泵的凸轮形线(确定柱塞的运动规律)。所以,这种喷射装置的第二个致命弱点就是喷油规律不可能直接控制。 喷油结束阶段是指从喷油泵端的燃油压力开始急剧减轻的时刻起到喷油器针阀完全落座停止喷油为止(图7中III段)。因为这种喷射系统是通过喷油泵的回油来降低喷油嘴端油压的,并以此控制针阀落座,于是针阀的落座速度取决于喷油咀端压力的降低速率。而且在此阶段因喷射压力减小,故而燃油雾化特点变差。 由于这种泵-管-喷油咀型燃油喷射装置是通过柴油泵控制喷油咀端的油压来控制喷油器的喷射程序的,因此存在以下几个问题: 首先,供油时刻和喷油时刻不一样,喷射时刻相对供油时刻增长;其次,喷油咀端的油压是通过燃油泵的供油规律间接控制的,于是喷油持续时间比供油连续时间长,较大喷油速率比较大供油速率低,喷油规律曲线和供油规律曲线也不一致,也就是说通过供油规律不能精确控制喷油规律。2、在高速大负荷等供油量多的工况下,喷射终了喷油嘴针阀落座后,受高压油管中压力波动的危害,喷油嘴端的油压有可能超过其启喷压力,此时将造成针阀再次升起而喷油的不正常喷射状况,称这种状况为二次喷射(图9中2图)。此时,因为喷射压力低,燃油雾化不良,所以燃烧不完全,碳烟增多,且整个喷射持续时间拉长,热效率降低,经济性下降。3、如果喷油终了柴油泵不能迅速回油,则高压油管中的残压过高,喷油嘴端的油压下降缓慢而造成喷油嘴针阀不能迅速落座,使针阀关闭不严,燃油仍以未完全雾化的油滴状态流出喷孔,称这种情形为滴油现象。滴油难以雾化,易生成积炭并堵塞喷孔。4、当发电机小负载状态运行时,供油速率低,使得某一瞬间燃油泵的供油量小于从喷油泵喷射的量和填充针阀室空间的油量之和,造成针阀在喷射程序中周期性跳动的状况,称之为断续喷射(如图9中3图)。这种喷射情形容易导致针阀副的过量损伤。当供油量过小时,会出现循环喷射量不断变动的状况,称这种情形为不规则喷射。再降低喷射量时有可能产生有的循环不喷油,或两个循环喷一次的隔次喷射现象(如图9中4图)。这种异常的喷射现象限制了柴油发电机的较低稳定转速。 分配泵体积小、质量轻、成本低、操作方便,但只能满足简易的供油特点和供油时刻变化特点。为此,在分配泵的基本上采用电子控制技术,增强其供油特征和控制精度,以适应日趋严格的节能与排放规范的要求。采用分配泵电喷技术,根据喷射量、喷射时间的控制方式不一样,有位置式控制和时间式控制两种。位置控制型电控柴油喷射系统与机械控制柴油喷射系统相比,控制精度和响应速度都有所提高。将机械控制柴油喷射装置改造为位置控制型电控装置时,柴油发电机的构成无需改动,但装置控制频率低,喷油压力和喷油规律无法独立控制。 电控位置式喷射装置在一定程度上改进了机械式喷射机构存在的上述问题,但不可能从根本上彻底解决,而上述存在的问题又直接制约喷油规律和放热规律的精确控制。因此,这种喷射装置满足不了日趋严格的节能与排放法规的要求而被淘汰。柴油发电机增压器压力不足或降低的原因
涡轮增压的具体用途就是提升柴油发电机进气量,从而提高柴油发电机的功率和功率,不过在操作中会产生增压压力下降的情况,这就会危害到作业效率,增压压力的变化对柴油发电机的性能影响较大,也容易察觉。当增压压力减少时,柴油发电机充气量减小,动力不足,油耗增高,排烟温度升高。因此,发现增压压力下降10%左右时应停机查看。柴油发电机是靠燃料在汽缸内燃烧作功来出现容量的,由于输入的燃料量受到吸入气缸内空气量的限制,因此柴油发电机所发生的容量也会受到限制,如果柴油发电机的运转性能已处于较佳状态,再增加输出容量只能通过压缩更多的空气进入汽缸来增加燃料量,从而提高柴油发电机作用途力。如果在相同的单位时间里,能够把更多的空气及燃油的混合气强制挤入汽缸(燃烧室)进行压缩燃爆动作(小排量的柴油发电机能“吸入”和大排气量相同的空气,提高容积效率),便能在相同的速度下出现较自然进气柴油发电机更大的动力输出。现象就像你拿一台电风扇向气缸内吹,硬是把风往里面灌,使里面的空气量增多,以得到较大的马力,只是这个扇子不是用电动马达,而是用柴油发电机排出的废气来驱动。通常而言,柴油发电机在配合这样的一个“强制进气”的动作后,起码都能提高30%-40% 的额外动力,如此惊人的效果就是涡轮增压器令人爱不释手的缘由。况且,获得完美的燃烧效率以及让动力得以大幅增强,原本就是涡轮增压装置所能提供给发电机组较大的价值所在。首先柴油发电机排出的废气,推动涡轮排烟端的涡轮叶轮,并使之旋转。由此便能带动与之相连的另一侧的压气机叶轮也同时转动。于是压气机叶轮就能把空气从进风口强制吸进,并经叶片的旋转压缩后,再进入管径越来越小的压缩通道作二次压缩,这些经压缩的空气温度会比直接吸入的高,需要通过中冷器进行降温之后再被注入气缸内燃烧。如此重复即是涡轮增压器的工作机理。空气滤清器滤清器沾满尘土而阻塞,引起进气阻力增加,压气机吸气损失增大,将使增压压力下降。此时,应及时维护空气滤清器。空气过滤器除尘效果欠佳,灰尘和润滑油等粘附在涡轮增压器的叶轮和扩压器的通道上,使气流阻力增加,引起压气机效率及增压压力下降。为防止这种现象,应保持空气过滤器的滤清效果,并按期拆洗压气机。中冷器流道中有污垢,水箱宝流动阻力增加,使进气密度下降,进而使增压压力下降。当中冷器、出气口的压差大于26.7kPa时,应予以清洗。柴油发电机燃烧不佳以及涡轮增压器密封设备失效而漏油,在涡轮机的叶片上转轴与密封环等易以形成积碳,其后果是是转子旋转阻力增加、转速下降、柴油发电机无法启动和加载不好,严重时可使涡轮增压器停止跳动,增压压力随之下降。外支撑式涡轮增压器,当其压气机背面气封损坏或柴油发电机汽缸密封性能下降时,一方面由于燃气泄露时涡轮速度下降,另一方面因近期泄露使压气机流量减小,两者均能引起增压压力减少。解除的策略是更替压气机气封和对柴油发电机进行保养,恢复气缸的密封性能。压气机排烟不畅,排力阻力增大,燃气在涡轮中膨胀受到一定的抑制,致使涡轮功率减少、增压器转速下降、压气机增压压力减小。造成涡轮背压偏高的因由可能是排气管变形或排烟消声器阻塞等。应予以拆除、清洁或更换。喷嘴环因持久处于发烫下作业,其叶片变形,喷嘴环截面面积加大,导致转子的转速和增压压力下降。因此,应更替喷嘴环。增压器旁通阀(增压器压力调整阀)中调节弹簧因温度过高而失效,放气阀因积炭而封闭不严等缘由使旁通阀失灵,在偏低的增压压力水就放掉了较多的燃气,只是增压压力减轻。产生这种状况可对旁通阀进行检查。涡轮增压器的轴承磨损,转子叶轮碰擦壳体,或有杂物阻滞,使增压压力随转子速度的下降而减小。应予以替换轴承。排气不畅,使涡轮排烟背压太高,也会致使增压压力减轻。柴油发电机气缸套、活塞、活塞环、气阀和气阀座圈等零部件磨损严重,增压空气进入气缸后泄漏量增大,使增压压力及压气机效率减小。在调整增压器压力之前,首先要做好换增压器的准备,也就是增压器已经用了很久了已经很旧了,以至于增压器压力不足,在增压器没有漏油的情形下,可以自己动手调一调,死马当活马医,调好了较好,没调好反正也做好了较坏的打算。先把增压器外面的罩子取下,里面有一根小螺杆,小螺杆的尽头有一颗螺母,将这颗螺母拧松,然后再将螺杆缩短即可调整增加增压器的压力,调节完毕再将螺母拧紧,装好罩子即可。新的增压器较好不要随意调整,康明斯发电机服务中心也标明严禁乱调的,以免损坏机器得不偿失。旧的增压器坏了换新的即可,当感受到增压器压力不足上坡无力时,不妨动手调整一下。增压器再出厂的时候就是调好的,当压力超过4Mpa时就会自动打开排烟。应有关于性地清理涡轮增压器的堵塞的过滤器或进行替换,清理气道内的油污垢,使气流畅通,更换密封圈,消除转子轴粘附的积碳,更替浮动轴承,疏通排气管道,使之通畅,视情更换配合副,如汽缸套、活塞、活塞环和气阀等,附着的油污需彻底清理,以减小空气流通阻力,增强增压压力。中冷器和压气机的内部积有油泥、灰尘会增加进气阻力,当中冷器进、出口压力差超过技术标准时,应清洗它的内部通道。压气机涡壳和叶轮上沽有油泥和灰尘时应分解清洁,并要定期进行;增压器的内部积碳会增加转子的转动阻力,使增压器速度下降,增压压力减少。积碳一般积存在涡轮叶片、转轴、密封环等部位,通常是因密封不严,机油漏入烧结及燃油燃烧不完全所致;检查转子的轴向、径向间隙,解决刮碰状况。转子的轴向间隙过大或变形产生刮碰情形,转子的速度也会下降,引起增压压力下降。所以分解维护增压器时,转子的径向间隙和轴向间隙都要认真测量,并注意观察是否有刮碰情形。柴油发电机储油箱通气管设置高度和做法
储油间的油箱应密闭且应设置通向室外的通风管,通气管应设置带阻火器的呼吸阀,油箱的下部应设置防止油品流散的设施。燃油供给管道的敷设应符合现行国家标准设计规范的规定。因为柴油柴油发电机房储油间通气管承担着储油箱内部和外部空气交换的重任,是储油间安全运转的关键部件之一。因此,对于柴油柴油发电机房储油间通气管的设计、安装、使用和保养都需要严格按照标准和规范进行,以保证柴油发电机房储油箱的安全。 燃料供给管道应在进入建筑物前和装备间内的管道上设置自动和手动切断阀(如图1所示)。柴油油机房储油箱通气管的布置图如图2所示,同时应当满足以下要求:1、通风管的口径应当足够大,以确保每分钟不低于1%的基准容积的空气交换。其管径没有主要规定,是根据储油量多少和压力来决定的。通常储油间都是柴油发电机的日用油箱,设置管径DN20就可以满足。 如果通风管的高度低于柴油发电机油箱内的较高油位,油箱内产生的气体将不能顺畅地通过通风管排出,从而可能导致油箱内产生负压或过大压力,危害发电机组的正常运转。 通风管设置得偏高会增加油箱内部的负压,减少燃油流量,从而影响发电机组的输出功率;此外,较高的通风管还容易让雨水和杂质进入油箱内部,影响油箱的清洁度和燃油品质。柴油发电机油箱通风管的高度应当根据详细的操作环境及所选定的油箱型号进行合理调节,以确保通风管能够有效地解除油箱内的气体或产生的压力。总之,在设置柴油发电机油箱通风管的高度时,需要充分考虑到油箱内气体的发生、油位高低、燃油流量以及环境因素等多个要素,以确保通风管能够正常作业,并保证柴油发电机组的正常运行。 柴油柴发机房储油箱通气管的安装该当满足以下要求: 柴油发电机房储油箱通气管的操作该当满足以下要求: 柴油油机房储油箱通气管的维保应当满足以下要求: 康明斯发电机公司在本文中将柴油发电机房储油箱通气管的安全办法分为设计、装配、操作和维保四个方面,对于每个环节都需要严格遵循标准和规范,以确保柴油柴发机房储油箱的安全运行。作为柴油柴发机房储油箱的重要构成部分,通气管的安全举措也需要引起重视,提升其安全防护办法的水平,避免任何损坏的发生。柴油发电机增压器的种类和好处
柴油发电机的容量和转矩大小与进入燃烧室的空气和燃油多少有直接的关系,虽然自然吸气式柴油发电机没有类似于柴油机节气门的进气节流装置,但其充气效率依然受制于大气压的限制,充气效率依然低于100%,升容量指标并不显著。因此,以改进充气效率为方案,提升发电机动力为目的进气增压技术得以在柴油发电机上应用。柴油发电机的增压装置就是采用一套增压器,对进入汽缸前的空气进行预压缩,使空气密增大,这样,空气进入气缸后,其密度、压强、质量均比在自然吸气因素下增大了。在汽缸容积一定的状况下,充气密度越大,新鲜空气的充入量越多;在满足燃油供给的条件下,混合气燃烧爆发推动活塞的力量会更大,因此柴油发电机能输出更大的容量和转矩。相比于同排气量的自然吸气柴油发电机,增压发电机在较高容量和较大转矩上能有20%~40%的提高量。同时,压缩终了时更高的混合气压强有利于提升燃烧效率,会导致更多的燃气做功转化为机械能,因此,增压发电机的机械效率普遍高于自然吸气式发电机。一台小排量的增压发电机经增压后,其功率和转矩可与一台较大排量的自然吸气式发电机相当。另外,发电机在采用了增压技术后,还能一定程度地提升燃油经济性和降低尾气排放。进气增压系统较核心的部件是增压器。增压器用于对吸入的空气进行压缩,增压器可以采用曲轴通过传动系统机械驱动,也可采用排烟管的炽热废气进行驱动。因此,根据驱动力的不同柴油发电机的增压装置可分为机械增压系统、废气涡轮增压系统、复合增压装置和电动涡轮增压装置。机械增压装置装配在发电机上并由传动带与发电机主轴相连接。发电机曲轴通过传动带驱动压气机的带轮,带轮通过轴将动力传动到压气机的上转子。在轴上布置有一个主动齿轮,与同齿数的从动齿轮啮合,从动齿轮通过轴连接到压气机下转子。因此,压气机的上、下转子等速反向旋转,转子上的叶片推动空气。空气从图4-18所示的1部分进入,随双转子旋转到2位置,再从3位置排出,实现了将空气增压并推到进气歧管里。机械增压系统的好处是压气机的速度和发电机速度同步,响应迅速,没有动力滞后的现象,动力输出非常流畅。但是因为受发电机驱动,速度不高,发电机功率提高效果没有废气涡轮增压明显。而且,当机械增压器工作时,消耗了部分发电机的动力,发电机燃料经济性会受到一些影响。废气涡轮增压系统是目前在柴油发电机上运用较多的一类增压系统。该系统是由涡轮室和增压器组成的。废气涡轮增压装置与发电机的连接如图1所示。涡轮室的进气口承接的是从汽缸内排出的炽热废气,故排烟歧管相连,涡流室的排烟口接到发电机组排烟管上,工作后的废气从排气管排出;增压器的进气口与空气过滤器管道相连,吸入新鲜空气,出气口接在进气歧管上。若将废气涡轮增压系统平面布局,则如图2所示。由图3可知,涡轮室内受废气冲击旋转的涡轮是主动件,通过一根轴刚性连接到增压器内的压气机叶轮,因此,叶轮是从动件,被涡轮带动旋转,与离心式水泵同样的机理,叶轮*也会产生低压区,吸入新鲜空气,再将空气沿半径方向高速甩出,从而挤压了空气密度,压缩了空气。由图4可见,涡轮增压装置利用发电机排出的废气惯性冲力来推动涡轮室内的涡轮,涡轮带动同轴的叶轮,叶轮压送由空气滤清器管道送来的空气,使之增压进入气缸。装置与发电机无任何机械联系,涡轮和叶轮的转速取决于废气的量和冲击转速。当发电机转速增快,废气排出转速与涡轮速度也同步增快,叶轮就压缩更多的空气进入汽缸,空气的压力和密度增大可以燃烧更多的燃料,相应增加燃料量就可以增加发电机的输出容量。通常而言,加装废气涡轮增压器后的发电机容量及转矩会增大20%~30%。废气涡轮增压装置是利用发电机废气的冲击能量工作的,这些废气的能量如果不加以利用也会被排放而白白浪费。废气涡轮增压装置很好地利用了这一部分能量,对发电机经济性能的改进有一定的帮助。柴油发电机使用了涡轮增压器后发电机升容量提高,油耗率减轻,排污减轻,指示容量和有效功率都提升了,也就是提升了机械效率,自然可以明显改善高负荷区运转的经济性。涡轮增压器不仅使功率范围增大,而且高负载的经济运行范围也扩大了。采用废气涡轮增压系统对经常满负荷高速运行的重型柴油发电机发电机组十分有利。涡轮增压器因为滞燃期短、压力升高率低,可以使燃烧噪声衰减。对于中、轻型载货柴油发电机发电机组及经常处于中等负载或部分负载运行的柴油发电机发电机组也是有利的。由于受炽热废气的冲击,涡轮的作业温度达到600~800℃,且在废气的冲击下,涡轮较高速度可以达到100000转/分钟以上,要比机械增压系统的转子速度高许多。如此高的速度和温度对增压系统的材质、加工精度、润滑和冷却都提出了非常高的要求。普通的机械滚针或滚珠轴承不能承受如此高的速度,因此涡轮增压器普遍采用全浮动轴承,利用发电机润滑油的压力的支持,使连接涡轮和叶轮的中间轴旋转时“悬浮”在轴承孔内。与此同时,发电机润滑油给予良好的润滑,预防高速要素下的磨耗,如图5所示。为了给增压器降温,还导入发电机防锈水来进行冷却。复合增压装置即在一台发电机上同时采用了废气涡轮增压和机械增压两种增压装置。机械增压有助于低转速时的扭力输出,但是高速度时功率输出有限;废气涡轮增压系统在高转速时拥有强大的功率输出,但低转速时增压效果不明显。若把两种增压技术结合在一起,取长补短,弥补各自的不足,就可以同时解除低速转矩和高速功率输出的问题,由此有了复合增压装置。该系统在大功率柴油发电机上运用比较多。在转速较低时,由机械增压供应大部分的增压压力,在1500转/分钟时,两个增压器同时供应增压压力。随着速度的提升,涡轮增压器能使发电机获得更大的容量,与此同时,机械增压器的增压压力逐渐减小。机械增压装置可以通过电磁离合器控制进行动力切断,在速度超过3500r/min时,由涡轮增压器供应所有的增压压力,此时机械增压器在电磁离合器的用途下完全与发电机分离,防止消耗发电机功率。采用了这一装置,其发电机输出功率大、燃油消耗率低、噪声小。与此同时,复合增压装置组成较为复杂,技术含量高,修理维保不容易,在目前要素下尚难以普及。增压后的空气,因增压器叶片对其做功及受到发电机作业时热传递的影响,其内能增加。因此,气体温度会上升至60~80℃(图6所示)。升温后的空气体积膨胀,反过来又制约了充气效率,即充入容积一定的汽缸后,由于体积膨胀的原由,发烫的空气要比温度低的空气品质要少。从这点来说,高温膨胀的空气削弱了增压的效果。为了防止这一负面危害,对增压后的空气进行冷却,使其温度下降、体积收缩,对提高充气效率是非常有必要的。因此,增压柴油发电机在增压器之后,会设置一个热交换系统来冷却增压后的空气,此系统称为*冷却系统,简称中冷器。中冷器通常布置于发电机的前端,利用迎面的外界空气对流对增压后的空气进行冷却降温,如图4-27所示。温度下降后,增压空气的密度增大,抵消了体积膨胀,改良了充气效率。柴油发电机储油罐及日用油箱设置要求
摘要:储油间在民用建筑内,主要见于柴油柴油发电机房的燃料存储。在规划小空间储油间时,要考虑储存物质的火灾危险性,建筑物的使用功用,预防性途径,灭火手段及管理对策。在综合性治理策略高效的情形下,将火灾危险性降到较低限度。储油间的油箱应密闭且应设置通向室外的通风管,通风管应设置带阻火器的呼吸阀,油箱的下部应设置避免油品流散的设施。 《民用建筑电气规划标准GB51348-2019》6.1.10储油设施的设置应符合下列规定:(1)当燃油来源及运输不便或机房内柴油发电机组较多、容量较大时,宜在建筑物主体外设置不大于15m3的储油罐;(5)储油设施除应符合本规定外,尚应符合现行国家标准《建筑布置防火规范》GB50016的相关规定。 典型柴发油路装置应包含油罐,日用油箱,管路装置,供电及智能监控系统等组成。如图1所示。 柴油发电机室内会设置日用油箱,单个日用油箱间内储存量不大于 1m3。(1)康明斯发电机组配置不超过1m3油箱。油箱中须系统低油位开关并设置20%和50%两阶段油位的预告信号。(2)油箱须按国家标准的要求制造,使用4~6mm厚优质钢板制作,端部作盘形和凸缘形,全部采用电焊。(3)油箱须配备面盖板、油位表、充油管密封帽、防火器、通气帽、滴盘、排渣管、油位开关、溢流管,入油口,存油量计等。存油量计必须为圆盘形具有相当的尺寸清楚地标以存油量,如空位、1/4、1/2.、3/4及满位。油量计之校验须于现场示范。(5)如油箱的静压不足以供所购买的柴油发电机、须供应辅助的电动输油泵(非必须)及其附属管道及相关电源,以便把油从主油箱输送到柴油发电机。油泵的全部电气系统,包括开关装置、发电机起动器、电缆终端均须为防爆型。(7)供油及回油管路必须距温度超过200℃的表面50mm如供给软油管,则所选材料必须耐250℃的发热。 大型数据中心因为柴发功率大,日用油箱储油量已不能满需求,要在室外设置储油罐,通常采用地埋式,实例如图2所示。(2)储油罐须采用厚度不小于6~8mm的钢板制成,并须提供足够和稳固的支撑以防止有关装备在安装或操作时变形。(3)储油罐须供应入孔。所有接缝须经焊接消除。油位检测管的正下方须设有适当大小的金属圆盘以防范油缸底部受到油位检测杆撞击而受损,而有关的金属圆盘须由厚度不小于6~8mm的钢板制成。(4)储油罐入油处须设有一功率显示计及油位超高的提示器。所有检测计、指示器及配线必须为当地消防局批准的设备和物料。 管路装置按照其功用可分为供油管、回油管、倒油管、进油管、退油管。(2) 回油管:柴油通过回油管由柴油发电机室内回流至油罐,回油方法有重力回油和动力回油两种,系统包括管道、阀门、回油泵等,若是采用重力回油方法,则不需设置回油泵。(3) 倒油管:当设置多个油罐时,油罐之间需要进行柴油倒换时,将通过倒油管完成,包括管道、阀门、倒油泵等(4) 退油管:将油罐内柴油退回柴发油路以外的容器,如罐车,包括管道、阀门、退油泵等;退油管可与倒油管通过阀门连接,利用倒油泵和相互连接的阀门实现退油,不再单独设置退泵。 供电装置为油路装置提供动力,包括配电柜、电线电缆、线管、桥架等。自动化系统实现装备启停或开关控制、装置状态监测、漏油检测,包括控制面板、渗油测定等。 油路系统设计应抓住以下几个关键点:关键装置和装备应冗余配置,并进行物理隔离,满足“容错”的要求;能自动制;能自动检测损坏和自动隔离事故。以下将探求柴发油路装置架构该怎么样规划。 日用油箱是关键装备,设置在柴油发电机室内,与柴油发电机一一对应,日用油箱之间应进行物理隔离。例如某参数中心配置了9(8+1)台柴发,每台柴发之间均物理隔离,每台柴发配置一个日用油箱,日用油箱之间也应进行了物理隔离。 油罐是关键装置,一般进行N+x(x≥1)配置,各油罐之间应物理隔离。 例如某数据中心油罐采用2+1模式配置,如图3途径一,3台油罐均未做隔离,任意一个油罐事故,可能会致使3台油罐都被迫下线台油罐未物理隔离,两台油罐中一台故障,可能导致两台油罐被迫下线,储油量不能满足运行要求,这两种策略都存在较大安全漏洞,也不满足Uptime TierⅣ标准。 如图4所示方法三,3台油罐之间都进行了物理隔离,一台油罐发生损坏后,仍有2台在线,储油量不受影响,满足Uptime TierⅣ标准及认证要求。 供油、回油、倒油、退油、进油管路中,供油管路是关键系统,其他属于非关键装置。 油罐至室内日用油箱段供油管需要有冗余配置(一般为2N),在油机房外关于每个日用油箱设置独立电动阀,下面将通过案例解析。 供油系统按照图6设计,已冗余配置并进行了物理隔离,每个油机房外没有单独设置电动阀门,当柴油发电机室外供油管路故障,隔离故障后另一路能正常供油;但柴油发电机室内发生事故要切断该机房的A、B路供油时,则A、B供油干管都要被隔离,所有柴发机房供油中断,这种手段存在较大安全隐患,也不满Uptime TierⅣ标准。 在柴发机房外的A或B路供油管上为每台日用油箱设置独立阀门,油机室内部或外部供油管路发生一次故障,损坏隔离后至少1路供油正常,能满足Uptime TierⅣ标准及认证要求。按照图7设计,在A供油管路上设置独立阀门。 当然也可按照图8布置,在A和B路供油管上同时设置独立阀门,单个柴油发电机室内供油管发生损坏,只需隔离损坏部分,其他油机室仍是两路供油,可靠性更高,但系统规划相对更复杂、维保难度更大、造价成本更高。 回油管路、倒油和退油管是非关键系统,按照N模式配置,满足基础需求即可,但在倒油和退油使用流程中要保证总的可油量不少于12小时。 综上所述,在兼顾满足Uptime TierⅣ认证、经济性的情下,管路系统架构规划可以参考图9。 供电系统为柴发油路系统供应动力,是关键系统应进行冗配置和物理隔离,另外供电系统规划要结合其他装备情况,确保供电系统发生一次故障后,供油装置至少有1路能正常供油。例如某数据中心计划采用3(2+1)台地埋油罐、9(8+1)台柴发,供油装置如图10所示,配电系统可以参考图11,关键的供油设备及控制系统都是按照2N配置,供电装置与之对应规划,非关键的倒油和回装置的配电,可以根据维护需求由A或B供电装置供电。 智能控制器是关键设备,要冗余配置,参与联锁控制的检测信号则分成2路信号同时接入控制模块A和B,仅用于显示记录的测定信号按照A/B路供油系统接入各自所属区域的。(1)A/B路供油管路装置中的潜油泵、油罐出油电动阀、管电动阀、供油管路的渗油检测均接入对应的A/B路控制系统,A/B路操作系统能控制A/B路供油泵启停、阀门开关,实现自动供油。智能控制系统能监测这些装置的状态,当产生渗油状况后,操作界面可以依据渗油点状况切断相关阀门或油泵,实现损坏自动隔离。 例如A/B路供油管路装置中的潜油泵、油罐出油电动阀、支管电动阀、供油管路的漏油测量均接入对应的A/B路控制系统,当A路控制装置产生损坏后,A路的潜油泵、阀门不能正常作业,致使A路供油装置事故,但B路供油系统仍能正常供油,满Uptime TierⅣ认证要求。若B路的潜油泵或供油管阀门接入A路控制模块,当A路监控系统发生事故,B路供油装置无法正常运转,存在较大安全漏洞,也不满足Uptime TierⅣ标准及认证要求。(2)参与联锁控制的测定信号,如油罐液位、日用油箱液位、日用油箱渗油、日用油箱至柴油发电机组的供油和回油管路漏油检测、柴发机组漏油检测、火灾信号等,则应分成2路信号同时接入控制界面A和B,确保信号能同时联动A、B路油路系统。 例如油罐液位信号,当油罐液位过低,为避免油泵空转要同时联动A、B路潜油泵停止运行。例如日用油箱液位信号,当液位过低时联动A、B路供油系统同时供油,当液位恢复后要联动A、B路供油装置同时停止供油。例如日用油箱渗油信号,当日用油箱产生渗油要同时要联动A、B路供油装置停止供油。例如火灾信号,当日用油箱间发生火灾时要联动切断该A、B路供油。 综合上述,若让柴发油路系统的规划对策达到Uptime TieⅣ标准并通过认证,规划程序中一定要理解并落实“容错”、“自动控制”、“故障自动辨识、自动隔离”等关键要求。但正如文章开始所述,有资质的油路规划单位多服务于石油、石化行业,参数中心行业案例、经验非常少,要让他们理解这些关键点并落实在设计策略中。柴油发电机冒大量浓烟故障情形、原由及解决办法
柴发机组排烟冒出异样烟色是技术状态不好的一种外在表现,如果继续使用下去,必将致使汽缸内积炭严重,损伤加剧,耗油比增加,供电不足等不好后果。因此在使用中务必致使足够的重视。发电机组的发电机在正常状态下作业时,所排出的烟是无色或浅灰色。若发电机排出浓烟,则说明技术状态恶化,是有故障的前兆。柴油发电机冒不一样颜色的烟,反应柴油发电机不一样的工作状态,如柴油发电机在工作中冒黑烟、白烟和蓝烟,就表明柴油发电机工作异样,存在一定的故障,应及时解决故障,才能提升柴油发电机的作业效率。 柴油发电机在工作中冒黑烟就是燃油不能完全燃烧,在废气中含有大量炭粒。(4)供油提前角不对。在使用流程中,柴油发电机供油提前角出现改变,当供油提前角过小,供油时间太迟,使柴油发电机工作粗暴,后燃增加,燃料无法完全燃烧,形成碳烟而排出,造成排烟冒黑烟。(2)喷油嘴雾化不良或喷油压力低、滴油等属于柴油发电机常见毛病,可采用单缸断油法进行判断,在柴油发电机中低转速工作状态下,用扳手依次拧松高压油管接头,逐缸停止供油,如柴油发电机的某一缸排黑烟的情形减轻或消失,则可判定为该缸喷油器有故障。应察看、校正喷油嘴。(4)调整供油提前角,使其符合规定要求。如图1所示,25%、50%、75%、100%负荷工况的较佳喷油提前角分别是13、14、23、25°CA。 柴油发电机在工作中冒白烟是燃油掺水和未燃烧完全的柴油汽化后从排气管解决。在寒冷季节时,柴油发电机冷车起动排白烟,属于正常状况,但当柴油发电机热车后,排烟管仍冒白烟,则说明柴油发电机作业异样。(3)汽缸破裂或缸垫漏水。当气缸盖漏水或汽缸垫冲坏与水道连通,冷却水渗入气缸内,在排烟时形成白烟。若汽缸内进水过多,柴油发电机要禁止启动,否则将发生连杆折弯、机体捣毁等重大故障,在进水之后必须将水排出方可起动。(3)将手靠近排气消音器处,白烟吹过手面时,有细微水珠。可以用逐缸断油法查看是哪一缸漏水,再确认是因为汽缸破裂,还是汽缸垫冲坏所致,然后更替相关机件。 柴油发电机蓝烟的发生机理为润滑油进入燃烧室内受热蒸发成为蓝色油气随废气一起排出。(1)柴油发电机机油油量过多。当柴油发电机机油油量过多,由于激溅润滑,机油沿汽缸壁窜入燃烧室,随废气排出形成蓝烟。(7)气缸封闭不严,机油窜入燃烧室燃烧。其原由是活塞环卡死在环槽中;活塞环弹力不足或开口重叠;活塞与汽缸配合间隙过大或将倒角环装错等。(1)首先检查油底壳中润滑油的存量,若油量过多,应放出多余部分,以达到油尺刻度中线偏上为宜(较佳位置如图5所示);若润滑油温度太高或油质变差,则有可能是汽缸垫在机油道口处烧坏所致,则应更换缸垫与润滑油。(2)若空滤过脏,长时间一直操作,导致发电机内进入灰尘,加大发电机磨耗,使活塞环和缸壁受损,机油窜入燃烧室燃烧,从而发生烧机油现象致使排蓝烟,应更替空气过滤器。(3)若不属于以上起因,则应先处置喷油嘴针阀积碳,积碳容易集结部位如图6所示。若机件磨损严重,应更换。然后再验看压缩装置中活塞环是否有断裂、卡滞、扭曲及装反等情形;气缸和活塞间隙是否超过极限间隙,连杆轴承间隙或气门杆与导管间隙是否过大等。(4)若系活塞环开口在一条直线上或活塞环弹力不足、活塞环倒装及磨损过多或折断,引起机油上窜,则应错开环口,准确装配活塞环或替换不合格的活塞环。 柴油发电机作业时,不冒烟或冒一些清淡的灰白色烟,有时用肉眼都难以看见,就表明柴油发电机工作正常。如柴油发电机作业时冒浓烟,是柴油发电机发生损坏的表现,这种损坏会致使柴油发电机功率不足。因此,在柴油发电机工作时要注意观察冒烟的烟色。发现烟色不正常,如冒黑烟、蓝烟、白烟应概述、查找因由,并加以解除。危害柴油发电机排烟管排烟不正常的缘由有很多,除柴油发电机本身条件以外,还有柴油发电机本身以外的要素。